Đáp án Toán 6 cánh diều chương 1 bài 12. Ước chung và ước chung lớn nhất
File Đáp án Toán 6 cánh diều chương 1 bài 12. Ước chừng và ước chừng lớn nhất . Toàn bộ câu hỏi, bài tập ở trong bài học đều có đáp án. Tài liệu dạng file word, tải về dễ dàng. File đáp án này giúp kiểm tra nhanh kết quả. Chỉ có đáp án nên giúp học sinh tư duy, tránh học vẹt
Xem: => Giáo án Toán 6 Cánh diều theo Module 3
CHƯƠNG 1: SỐ TỰ NHIÊN
BÀI 12: ƯỚC CHUNG VÀ ƯỚC CHUNG LỚN NHẤT
- ƯỚC CHUNG VÀ ƯỚC CHUNG LỚN NHẤT
Bài 1: a) Nêu các ước của 30 và của 48 theo thứ tự tăng dần:
- b) Tìm các số vừa ở trong hàng thứ nhất vừa ở trong hàng thứ hai.
- c) Xác định số lớn nhất trong các ước chung của 30 và 48.
Đáp án:
- a) Các ước của 30 là: 1, 2, 3, 5, 6, 10, 15, 30.
Các ước của 48 là: 1, 2, 3, 4, 6, 8, 12, 16, 24, 48.
Ta điền vào bảng như sau:
- b) Các số vừa ở trong hàng thứ nhất vừa ở trong hàng thứ hai là 1, 2, 3, 6 được gọi là ước chung của 30 và 48.
- c) Số lớn nhất trong các ước chung của 30 và 48 là 6. Số đó được gọi là ước chung lớn nhất của 30 và 48.
Bài 2: a) Số 8 có phải là ước chung của 24 và 56 không? Vì sao?
- b) Số 8 có phải là ước chung của 14 và 48 không? Vì sao?
Đáp án:
- a) Ta có: 24 và 56 đều chia hết cho 8 (vì 24 : 8 = 3; 56 : 8 = 7) nên 8 vừa là ước của 24 vừa là ước của 56. Do đó 8 là ước chung của 24 và 56.
- b) Ta có: 14 : 8 = 1 (dư 6); 48 : 8 = 6 nên 8 là ước của 48 nhưng không là ước của 14. Do đó 8 không phải là ước chung của 14 và 48.
Bài 3: Số 7 có phải là ước chung của 14, 49, 63 không? Vì sao?
Đáp án:
Ta có: 14 : 7 = 2; 49 : 7 = 7; 63 : 7 = 9
Nên 7 là ước của cả ba số 14; 49 và 63.
Vậy 7 là ước chung của ba số 14; 49 và 63.
Bài 4: Quan sát bảng sau:
- a) Viết tập hợp ƯC(24, 36).
- b) Tìm ƯCLN (24, 36).
- c) Thực hiện phép chia ƯCLN (24, 36) cho các ước chung của hai số đó.
Đáp án:
- a) Quan sát bảng trên ta thấy các số 1; 2; 3; 4; 6; 12 vừa là ước của 24 vừa là ước là ước của 36 nên các số đó là ước chung của 24 và 36.
Do đó ta viết: ƯC(24, 36) = {1; 2; 3; 4; 6; 12}.
- b) Trong các ước chung của 24 và 36, ta thấy 12 là số lớn nhất.
Vậy ƯCLN(24, 36) = 12.
- c) Thực hiện phép chia ƯCLN(24, 36) cho các ước chung của hai số đó ta được:
12 : 1 = 12
12 : 2 = 6
12 : 3 = 4
12 : 4 = 3
12 : 6 = 2
12 : 12 = 1.
Bài 5: Tìm tất cả các số có hai chữ số là ước chung của a và b, biết rằng ƯCLN(a, b) = 80.
Đáp án:
Vì ước chung của a và b đều là ước của ƯCLN(a, b) = 80 nên ta đi tìm các ước của 80 bằng cách lấy 80 lần lượt chia cho các số tự nhiên từ 1 đến 80, ta được các ước của 80 là: 1; 2; 4; 5; 8; 10; 16; 20; 40; 80.
Vậy tất cả các số có hai chữ số là ước chung của a và b là: 10; 16; 20; 40; 80.
- TÌM ƯỚC CHUNG LỚN NHẤT BẰNG CÁCH PHÂN TÍCH CÁC SỐ RA THỪA SỐ NGUYÊN TỐ
Bài 1: Ta có thể tìm ƯCLN (36, 48)...
Đáp án:
Ta có thể tìm ƯCLN (36, 48) theo các bước sau:
Bước 1. Phân tích 36 và 48 ra thừa số nguyên tố
36 = 2 . 2 . 3 . 3 = 22 . 32
48 = 2 . 2 . 2 .2 . 3 = 24 . 3
Bước 2. Chọn ra các thừa số nguyên tố chung của 36 và 48 là 2 và 3.
Bước 3. Với mỗi thừa số nguyên tố chung 2 và 3, ta chọn lũy thừa với số mũ nhỏ nhất
+) Số mũ nhỏ nhất của 2 là 2, ta chọn 22.
+) Số mũ nhỏ nhất của 3 là 1, ta chọn 31.
Bước 4. Lấy tích của các lũy thừa đã chọn, ta nhận được ước chung lớn nhất cần tìm ƯCLN (36, 48) = 22 . 31 = 12.
Bài 2: Tìm ƯCLN của 126, 162
Đáp án:
+ Ta phân tích các số 126 và 162 ra thừa số nguyên tố bằng cách viết "theo cột dọc" (các em cũng có thể viết bằng "rẽ nhánh") ta có:
Do đó: 126 = 2. 3 . 3. 7= 2 . 32 . 7
162 = 2 . 3. 3. 3. 3 = 2 . 34
+ Các thừa số nguyên tố chung của 126 và 162 là 2 và 3.
+ Số mũ nhỏ nhất của 2 là 1; số mũ nhỏ nhất của 3 là 2.
Vậy ƯCLN(126, 162) = 21 . 32 = 2 . 9 = 18.
- HAI SỐ NGUYÊN TỐ CÙNG NHAU
Bài 1: Tìm ƯCLN(8, 27).
Đáp án:
Để biết hai số có phải là hai số nguyên tố cùng nhau hay không, ta đi tìm ƯCLN của hai số đó, nếu ƯCLN của hai số là 1 thì hai số đó là hai số nguyên tố cùng nhau.
Ta có:
Do đó: 24 = 23 . 3 và 35 = 5 . 7
Ta thấy hai số 24 và 35 không có thừa số nguyên tố chung nên ƯCLN(24, 35) = 1.
Vậy 24 và 35 là hai số nguyên tố cùng nhau.
Bài 2: Hai số 24 và 35 có nguyên tố cùng nhau không? Vì sao?
Đáp án:
Để biết hai số có phải là hai số nguyên tố cùng nhau hay không, ta đi tìm ƯCLN của hai số đó, nếu ƯCLN của hai số là 1 thì hai số đó là hai số nguyên tố cùng nhau.
Ta có:
Do đó: 24 = 23 . 3 và 35 = 5 . 7
Ta thấy hai số 24 và 35 không có thừa số nguyên tố chung nên ƯCLN(24, 35) = 1.
Vậy 24 và 35 là hai số nguyên tố cùng nhau.
Bài 3: a) Tìm ƯCLN(4, 9).
- b) Có thể rút gọn phân số...được nữa hay không?
Đáp án:
- a) Ta có: 4 = 2 . 2 = 22và 9 = 3 . 3 = 32
Do đó hai số 4 và 9 không có thừa số nguyên tố chung nên ƯCLN(4, 9) = 1.
- b) Vì ƯCLN(4, 9) = 1 nên ta KHÔNG thể rút gọn phân số được nữa (vì cả tử và mẫu đều không cùng chia hết được cho số tự nhiên nào khác 1).
BÀI TẬP
Bài 1: Số 1 có phải là ước chung của hai số tự nhiên bất kì không? Vì sao?
Đáp án:
Số 1 là ước chung của hai số tự nhiên bất kì vì tất cả các số tự nhiên đều có ước là 1.
Bài 2: Quan sát hai thanh sau:
- a) Viết tập hợp ƯC(440, 495).
- b) Tìm ƯCLN(440, 495).
Đáp án:
- a) Quan sát hình vẽ ta thấy
+ Các ước của 440 là: 1; 2; 4; 5; 8; 10; 11; 20; 22; 40; 44; 55; 88; 110; 220; 440
+ Các ước của 495 là: 1; 3; 5; 9; 11; 15; 33; 45; 55; 99; 165; 495
+ Các ước chung của 440 và 495 là: 1; 5; 11; 55.
Vậy ƯC(440, 495) = {1; 5; 11; 55}.
- b) Trong các ước chung của 440 và 495, ta thấy 55 là số lớn nhất.
Vậy ƯCLN(440, 495) = 55.
Bài 3: Tìm ước chung lớn nhất của từng cặp số trong ba số sau đây:
- a) 31, 22, 34;
- b) 105, 128, 135;
Đáp án:
- a) + Ta có: 31 là số nguyên tố nên nó chỉ có hai ước là 1 và 31.
22 và 34 không chia hết cho 31
Do đó ta có: ƯCLN(31, 22) = 1 và ƯCLN(31, 34) = 1.
+ Ta còn phải tìm ƯCLN(22, 34), ta phân tích các số 22 và 34 ra thừa số nguyên tố ta được: 22 = 2 . 11; 34 = 2 . 17.
Khi đó thừa số nguyên tố chung của 22 và 34 là 2 với số mũ nhỏ nhất là 1.
Vậy ƯCLN( 22, 34) = 2.
- b) Ta phân tích các số 105; 128; 135 ra thừa số nguyên tố, ta có:
Do đó: 105 = 3 . 5 . 7
128 = 2 . 2 . 2 . 2 . 2 . 2 . 2 = 27
135 = 3 . 3 . 3 . 5 = 33 . 5
+ Hai số 105 và 128 không có thừa số nguyên tố chung nên ƯCLN(105, 128) = 1.
+ Hai số 128 và 135 không có thừa số nguyên tố chung nên ƯCLN(128, 135) = 1.
+ Hai số 105 và 135 có các thừa số nguyên tố chung là 3 và 5.
Số 3 có số mũ nhỏ nhất là 1; số 5 có số mũ nhỏ nhất là 1.
Do đó: ƯCLN(105, 135) = 31 . 51 = 3 . 5 = 15
Vậy ƯCLN(105, 128) = 1; ƯCLN(128, 135) = 1 và ƯCLN(105, 135) = 15.
Bài 4: Tìm ƯCLN(126, 150). Từ đó hãy tìm tất cả các ước chung của 126 và 150.
Đáp án:
Do đó: 126 = 2 . 3 . 3 . 7 = 2 . 32 . 7
150 = 2 . 3 . 5 . 5 = 2 . 3 . 52
Các thừa số nguyên tố chung của 126 và 150 là 2 và 3
Số 2 có số mũ nhỏ nhất là 1; số 3 có số mũ nhỏ nhất là 1.
Do đó: ƯCLN(126, 150) = 21 . 31 = 2 . 3 = 6
Lại có 6 có các ước là 1; 2; 3; 6
Ước chung của 126 và 150 là ước của ƯCLN(126, 150) là 1; 2; 3; 6
Hay ƯC(126, 150) = {1; 2; 3; 6}
Vậy ƯCLN(126, 150) = 6; ƯC(126, 150) = {1; 2; 3; 6}.
Bài 5: Rút gọn các phân số sau về phân số tối giản...
Đáp án:
=
=
=
Bài 6: Phân số...bằng các phân số nào trong các phân số sau...
Đáp án:
Ta thấy các phân số chưa là phân số tối giản, mà phân số là phân số tối giản (vì 4 và 9 là hai số nguyên tố cùng nhau) nên ta đi rút gọn các phân số rồi so sánh.
+ Ta có: 48 = 3 . 16 = 3 . 24; 108 = 4 . 27 = 22 . 33
Các thừa số nguyên tố chung là 2, 3 và số mũ nhỏ nhất của 2 là 2; số mũ nhỏ nhất của 3 là 1.
Nên ƯCLN(48, 108) = 22 . 3 = 12.
Do đó:
+ Ta có: 80 = 8 . 10 = 23 . (2 . 5) = 24 . 5
180 = 10 . 18 = (2 . 5) .(2 . 3 . 3) = 22 . 32 . 5
Các thừa số nguyên tố chung là 2 và 5; Số 2 có số mũ nhỏ nhất là 2, số 5 có số mũ nhỏ nhất là 1.
Nên ƯCLN(80, 180) = 22 . 5 = 20
Do đó:
+ Ta có: 60 = 6 . 10 = (2. 3) . (2 . 5) = 22 . 3 . 5
130 = 10 . 13 = 2 . 5 . 13
Các thừa số nguyên tố chung là 2 và 5, số 2 và số 5 đều có số mũ nhỏ nhất là 1.
Nên ƯCLN(60, 130) = 2 . 5 = 10
Do đó:
.
+ Ta có: 135 = 5 . 27 = 5 . 33; 270 = 10 . 27 = (2 . 5) .33 = 2 . 33 . 5
Các thừa số nguyên tố chung là 3 và 5. Số 3 có số mũ nhỏ nhất là 3 và 5 có số mũ nhỏ nhất là 1.
Nên ƯCLN(135, 270) = 33. 5 = 135
Do đó:
.
Vậy trong các phân số đã cho, các phân số bằng là
Bài 7: Một nhóm gồm 24 bạn nữ và 30 bạn nam tham gia một số trò chơi. Có thể chia các bạn thành nhiều nhất bao nhiêu đội chơi sao cho số bạn nam cũng như số bạn nữ được chia đều vào các đội?
Đáp án:
Giả sử a là số đội chơi được chia. (a ∈ )
Vì a là lớn nhất (phải chia nhiều đội nhất) và số bạn nam cũng như số bạn nữ được chia đều vào các đội nên khi đó a là ước chung lớn nhất của 24 và 30.
Ta có: 24 = 3 . 8 = 3 . 23 ; 30 = 3 . 10 = 3 . 2 . 5
(Các thừa số chung là 2; 3 và đều có số mũ nhỏ nhất là 1)
Khi đó: ƯCLN(24, 30) = 2 . 3 = 6 hay a = 6.
Vậy có thể chia các bạn nhiều nhất thành 6 đội.
Bài 8: Một khu đất có dạng hình chữ nhật với chiều dài 48m, chiều rộng 42m. Người ta muốn chia khu đất ấy thành những mảnh hình vuông bằng nhau (với độ dài cạnh đo theo đơn vị mét là số tự nhiên) để trồng các loại rau. Có thể chia được bằng bao nhiêu cách? Với cách chia nào thì cạnh của mảnh đất hình vuông là lớn nhất và bằng bao nhiêu?
Đáp án:
Gọi: a là số cách chia mảnh đất thành các mảnh hình vuông bằng nhau
b (m) là độ dài cạnh của mảnh đất hình vuông được chia theo cách chia lớn nhất a,b ∈
Theo yêu cầu bài ra thì khi đó:
+ a là số các ước chung của 48 và 42
+ b là ước chung lớn nhất của 48 và 42
Ta có: 42 = 2 . 21 = 2 . 3 . 7
48 = 16 . 3 = 24 . 3
Do đó: ƯCLN(42, 48) = 2 . 3 = 6 hay b = 6 m
Mà Ư(6) = {1; 2; 3; 6) Nên ƯC(42, 48) = {1; 2; 3; 6}
Do đó có 4 ước chung của 42 và 48 hay a = 4.
Vậy:
+ Số cách chia thành những mảnh hình vuông bằng nhau là 4 cách.
+ Với cách chia có độ dài cạnh là 6m thì cạnh của mảnh đất hình vuông là lớn nhất.
CÓ THỂ EM CHƯA BIẾT
Áp dụng thuật toán Ơ-clit để tìm ƯCLN của:
- a) 126 và 162;
- b) 2 268 và 1 260.
Đáp án:
a)
Bước 1: Chia số 162 cho 126
162 : 126 = 1 (dư 36) (1)
Bước 2:
+) Phép chia (1) còn dư nên lấy số chia 126 chia cho số dư 36
126 : 36 = 3 (dư 18) (2)
+) Phép chia (2) còn dư nên lấy số chia 36 chia cho số dư 18
36 : 18 = 2 (dư 0) (3)
Phép chia (3) có số dư bằng 0, ta dừng lại.
Bước 3: Số chia cuối cùng là ƯCLN phải tìm
Vậy ƯCLN(162, 126) = 18.
- b) Thực hiện tương tự ta có:
Bước 1: Chia số 2 268 cho 1 260
2 268 : 1 260 = 1 (dư 1 008) (1)
Bước 2:
+) Phép chia (1) còn dư nên lấy số chia 1 260 chia cho số dư 1 008
1 260 : 1 008 = 1 (dư 252) (2)
+) Phép chia (2) còn dư nên lấy số chia 1 008 chia cho số dư 252
1 008 : 252 = 4 (dư 0) (3)
Phép chia (3) có số dư bằng 0, ta dừng lại.
Bước 3: Số chia cuối cùng là ƯCLN phải tìm
Vậy ƯCLN(2 268, 1 260) = 252.