Đáp án Toán 6 cánh diều chương 5 bài 5. Số thập phân
File Đáp án Toán 6 cánh diều chương 5 bài 5. Số thập phân. Toàn bộ câu hỏi, bài tập ở trong bài học đều có đáp án. Tài liệu dạng file word, tải về dễ dàng. File đáp án này giúp kiểm tra nhanh kết quả. Chỉ có đáp án nên giúp học sinh tư duy, tránh học vẹt
Xem: => Giáo án Toán 6 Cánh diều theo Module 3
CHƯƠNG 5. PHÂN SỐ VÀ SỐ THẬP PHÂN
BÀI 5: SỐ THẬP PHÂN
- SỐ THẬP PHÂN
Bài 1: Viết các phân số...dưới dạng số thập phân và đọc các số thập phân đó theo mẫu.
Đáp án:
+)
+)
Bài 2: Tính tích và viết kết quả ở dạng phân số tối giản...
Đáp án:
= - 0,009
= = -0,625
= = 3,08
Bài 3: Viết các số thập phân sau dưới dạng phân số tối giản: -0,125; -0,012; -4,005...
Đáp án:
-0,125 =
-0,012 =
-4,005 =
- SO SÁNH CÁC SỐ THẬP PHÂN
Bài 1: So sánh:
- a) 508,99 và 509,01;
- b) 315,267 và 315,29.
Đáp án:
- a) Vì 508 < 509 nên 508,99 < 509,01.
Vậy 508,99 < 509,01.
- b) Ta có: 315 = 315 và kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần trăm. Do 6 < 9 nên 315,267 < 315,29.
Vậy 315,267 < 315,29.
Bài 2: Nêu cách so sánh hai số nguyên âm.
Đáp án:
Cách so sánh hai số nguyên âm a và b:
- Tìm số đối của hai số nguyên a và b.
- Ta sẽ so sánh số đối của hai số nguyên âm a và b với nhau (số nguyên âm nào có số đối lớn hơn thì sẽ nhỏ hơn).
Bài 3: Viết các số sau theo thứ tự giảm dần: -120,341; 36,095; 36,1; -120,34.
Đáp án:
Ta sẽ chia các số thập phân trên thành hai nhóm:
- Nhóm 1 gồm các số thập phân âm: -120,341; -120,34.
- Nhóm 2 gồm các số thập phân dương: 36,095; 36,1.
Vì các số thập phân âm luôn nhỏ hơn các số thập phân dương nên ta chỉ cần so sánh các số trong từng nhóm với nhau.
Ở nhóm 1: Ta có số đối của số thập phân -120,341 là 120,341 và số đối của số thập phân – 120,34 là 120,34. Ta có: 120 = 120, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần nghìn. Do 1 > 0 nên 120,341 > 120,34 hay -120,341 < -120,34.
Ở nhóm 2: Ta có 36 = 36, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 1 nên 36,095 < 36,1.
Suy ra -120,341 < -120,34 < 36,095 < 36,1.
Vậy 36,1; 36,095; -120,34; -120,341.
BÀI TẬP
Bài 1: Viết các phân số và hỗn số sau dưới dạng số thập phân...
Đáp án:
5
Bài 2: Viết các số thập phân sau dưới dạng phân số tối giản: - 0,225; - 0,033....
Đáp án:
-0,225 = - 0,033 = -
Bài 3: Viết các số sau theo thứ tự tăng dần:
- a) 7,012; 7,102; 7,01;
- b) 73,059; - 49,037; - 49,307.
Đáp án:
- a) Ta sẽ so sánh từng cặp số với nhau:
+) 7,012 và 7,102.
Ta có 7 = 7, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 1 nên 7,012 < 7,102 (1).
+) 7,012 và 7,01
Ta có 7 = 7, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần nghìn. Do 0 < 2 nên 7,012 > 7,01 (2).
Từ (1) và (2) suy ra: 7,01 < 7,012 < 7,102.
Vậy các số theo thứ tự tăng dần là: 7,01; 7,012; 7,102.
- b) Vì số thập phân âm luôn bé hơn số thập phân dương nên ta chỉ cần so sánh -49,037 và -49,307.
Ta có số đối của số thập phân -49,037 là 49,037 và số đối của số thập phân -49,307 là 49,307.
Ta có: 49 = 49, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 3 nên 49,037 < 49,307 hay -49,037 > -49,307.
Suy ra: -49,307 < -49,037 < 73,059.
Vậy các số theo thứ tự tăng dần là: -49,307; -49,037; 73,059.
Bài 4: Viết các số sau theo thứ tự giảm dần:
- a) 9,099; 9,009; 9,090; 9,990;
- b) - 6,27; - 6,207; - 6,027; - 6,277.
Đáp án:
- a) Ta có: 9 = 9, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 9 nên 9,990 là số lớn nhất.
Các số còn lại, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần trăm. Do 0 < 9 nên 9,009 là số nhỏ nhất.
Hai số còn lại là 9,099; 9,090, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần nghìn. Do 0 < 9 nên 9,090 < 9,099.
Suy ra 9,009 < 9,090 < 9,099 < 9,990.
Vậy các số theo thứ tự giảm dần là: 9,990; 9,099; 9,090; 9,009.
- b) Vì các số - 6,27; - 6,207; - 6,027; - 6,277 đều là số thập phân âm nên ta sẽ chuyển qua so sánh các số đối lần lượt là: 6,27; 6,207; 6,027; 6,277.
Ta có 6 = 6, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 2 nên số 6,027 là số nhỏ nhất.
Đối với các số còn lại 6,27; 6,207; 6,277, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần trăm. Do 0 < 7 nên 6,207 là số nhỏ nhất trong dãy này.
Còn lại hai số 6,27; 6,277, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần nghìn. Do 0 < 7 nên 6,27 < 6,277.
Suy ra 6,027 < 6,207 < 6,27 < 6,277 hay - 6,027 > - 6,207 > - 6,27 > - 6,277.
Vậy các số theo thứ tự giảm dần là: - 6,027; - 6,207; - 6,27; - 6,277.
Bài 5: Trong một cuộc thi chạy 200 m, có ba vận động viên đạt thành tích cao nhất là:
Mai Anh: 31,42 giây; Ngọc Mai: 31,48 giây; Phương Hà: 31,09 giây.
Vận động viên nào đã về nhất? Về nhì? Về ba?...
Đáp án:
Ta cần so sánh thời gian hoàn thành cuộc đua của các vận động viên tham gia:
Ta có 31 = 31 = 31, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần mười. Do 0 < 4 nên 31,09 là số bé nhất.
Còn hai số còn lại 31,42 và 31,48, kể từ trái sang phải cặp chữ số cùng hàng ở sau dấu phẩy đầu tiên khác nhau là cặp chữ số ở hàng phần trăm. Do 2 < 8 nên 31,42 < 31,48.
Từ đó suy ra: 31,09 < 31,42 < 31,48.
Vận động viên về nhất là vận động viên đến đích sớm hơn hay mất ít thời gian nhất để hoàn thành cuộc đua. Vận động viên về nhì là vận động viên mất ít thời gian tiếp theo. Vận động viên về ba là vận động viên mất nhiều thời gian nhất trong ba vận động viên.
Vậy vận động viên về nhất là bạn Phương Hà, vận động viên về nhì là bạn Mai Anh, vận động viên về ba là bạn Ngọc Mai.