Trắc nghiệm đúng sai Toán 8 kết nối Bài 33: Hai tam giác đồng dạng
Phiếu câu hỏi và bài tập trắc nghiệm Đ/S môn Toán 8 Bài 33: Hai tam giác đồng dạng sách kết nối tri thức. Bộ câu hỏi nhằm giúp học sinh vừa ôn tập bài học, vừa làm quen dần với dạng bài tập mới trong chương trình thi THPT. Các câu hỏi tăng dần về độ khó. Tài liệu có file Word tải về. Thời gian tới, nội dung này sẽ tiếp tục được bổ sung.
Xem: => Giáo án toán 8 kết nối tri thức
BÀI 33: HAI TAM GIÁC ĐỒNG DẠNG
Câu 1: Cho tam giác ABC. Trên cạnh AB lấy I sao cho . Qua I kẻ các đường thẳng song song với BC và AC, chúng lần lượt cắt AC và BC tại D và E.
a) Hình vẽ tam giác ABC là:
b) ΔAID ~ ΔIBE
c) Tỉ số đồng dạng của ΔAID và ΔABC =
d) ΔIBE ~ ΔABC có góc IBE = góc ACB.
Đáp án:
- A, B đúng
- C, D sai
Câu 2:Cho tam giác ABC và tam giác DEF với góc A = góc D = 60°, góc B = góc E = 50°, và AB = 2DE.
a) Tam giác ABC và tam giác DEF đồng dạng với nhau.
b) Tỉ số đồng dạng giữa hai tam giác là 2.
c) Góc C bằng 70°
d) Cạnh BC gấp đôi cạnh EF.
Câu 3: Một người muốn đo chiều cao của một cây mà không thể leo lên. Anh ta đo được bóng của cây dài 12m vào cùng thời điểm bóng của một cọc thẳng đứng cao 2m dài 3m.
a) Chiều cao của cây là 8m.
b) Tỉ số giữa chiều cao của cây và chiều dài bóng của nó bằng tỉ số giữa chiều cao của cọc và chiều dài bóng của cọc.
c) Hai tam giác tạo bởi cây và cọc với bóng của chúng không đồng dạng.
d) Nếu bóng của cọc dài 4m, thì bóng của cây sẽ dài 16m.
Câu 4: Cho tam giác MNO và tam giác JQK, biết rằng:
= k (với k là hằng số dương)
góc B = góc E
a) Hai tam giác ΔMNO và ΔJQK đồng dạng với nhau theo trường hợp c−c−c (cạnh - cạnh - cạnh).
b) Nếu k = 2, thì các cạnh của tam giác ΔMNO gấp đôi các cạnh tương ứng của tam giác JQK.
c) Nếu k = 1, thì hai tam giác bằng nhau.
d) Hai tam giác không đồng dạng vì chỉ có một cặp góc bằng nhau.
Câu 5: Một người quan sát một tòa tháp cao từ một điểm cách tháp 20m. Cô ấy đo được góc nhìn từ mắt đến đỉnh tháp là 30∘ và mắt cô ấy cách mặt đất 1,5m.
a) Có thể sử dụng tam giác đồng dạng để tính chiều cao của tòa tháp.
b) Chiều cao của tòa tháp (tính từ mặt đất đến đỉnh) được xác định bằng công thức h = 1,5 + 20 .tan30∘.
c) Nếu góc nhìn là 45∘, thì chiều cao của tòa tháp (không tính độ cao của mắt) bằng khoảng cách từ người quan sát đến tháp.
d) Nếu góc nhìn lớn hơn 30∘, khoảng cách từ người đến tháp cần giảm đi.
--------------- Còn tiếp ---------------
=> Giáo án dạy thêm toán 8 kết nối bài 33: Hai tam giác đồng dạng