Kênh giáo viên » Toán 8 » Giáo án powerpoint dạy thêm toán 8 cánh diều

Giáo án powerpoint dạy thêm toán 8 cánh diều

Giáo án điện tử dạy thêm Toán 8 sách cánh diều. Giáo án dạy thêm là giáo án ôn tập và củng cố kiến thức bài học cho học sinh. Phần này dành cho giáo viên dạy vào buổi chiều hoặc các buổi dạy tăng cường. Một số nơi gọi là giáo án buổi 2, giáo án buổi chiều. Hi vọng, giáo án mang tới sự hữu ích cho thầy cô dạy Toán 8 cánh diều.

Click vào ảnh dưới đây để xem giáo án rõ

Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều

Một số tài liệu quan tâm khác

Phần trình bày nội dung giáo án

CHÀO MỪNG CÁC EM ĐẾN VỚI TIẾT HỌC HÔM NAY 

KHỞI ĐỘNG 

+ Một hình chữ nhật có chiều dài là x, chiều rộng bằng 2/3 chiều dài. Biết diện tích của hình chữ nhật là 25cm^2. Tính chiều dài và chiều rộng? 

CHƯƠNG VII. PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 

BÀI 1. PHƯƠNG TRÌNH BẬC NHẤT MỘT ẨN 

HỆ THỐNG KIẾN THỨC 

  1. Mở đầu về phương trình một ẩn
  2. a) Nhận biết phương trình một ẩn: Một phương trình với ẩn x có dạng A(x) = B(x), trong đó vế trái A(x) và vế phải B(x) là hai biểu thức của cùng một biến x.

- Ví dụ: x+1=5x+6 

  1. b) Nhận biết khái niệm nghiệm của phương trình:

- Nếu hai vế của phương trình (ẩn x) nhận cùng một giá trị x = a thì số a gọi là nghiệm của phương trình đó. 

- Giải một phương trình là tìm tất cả các nghiệm của nó. 

- Ví dụ: Cho phương trình: 2x+1=3−x 

Ta thấy x=2/3 là nghiệm của phương trình trên vì tại x=2/3 thì VP = VT 

  1. Phương trình bậc nhất một ẩn
  2. a) Khái niệm phương trình bậc nhất một ẩn

- Phương trình dạng ax+b=0, với a, b là hai số đã cho và a≠0, được gọi là phương trình bậc nhất một ẩn x. 

- Ví dụ: 2x+1=0 

  1. b) Cách giải phương trình bậc nhất một ẩn

- Phương trình bậc nhất ax+b=0;(a≠0), được giải như sau: 

ax+b=0 

ax=−b 

x=−b/a 

- Phương trình bậc nhất ax+b=0;(a≠0), luôn có một nghiệm duy nhất x=−b/a 

- Ví dụ: Giải phương trình: 1/3x−3=0 

⇔1/3x=3⇔x=9 

Vậy phương trình có nghiệm duy nhất là x = 9 

+ Giải phương trình dạng ax+b=cx+d(a≠c) 

- Bằng cách chuyển vế và nhân cả hai vế của phương trình với một số khác 0, ta có thể đưa một số phương trình ẩn x về phương trình dạng ax + b = 0 và do đó có thể giải được chúng. 

- Ví dụ: Cho phương trình:  

5x−7=1/5x+14  

⇔5x−1/5x=14+7  

⇔24/5x=21  

⇔x=35/8  

Vậy nghiệm của phương trình là x=35/8 

LUYỆN TẬP 

PHIẾU BÀI TẬP SỐ 1 

DẠNG 1: Nhận dạng phương trình bậc nhất một ẩn 

Bài 1. Hãy xét xem các phương trình sau có là phương trình bậc nhất một ẩn hay không? Nếu có hãy chỉ ra hệ số a và b 

a) 3x4=0   ; 

b) 0x+3=0 

c) 12x=0          ; 

d) x237=0 

e) x1=0     ; 

f) 0x1=0 

g) 13x=0          ; 

h) x24=0 

Giải 

  1. a) Là phương trình bậc nhất một ẩn với a=3;b=−4
  2. b) Không là phương trình bậc nhất một ẩn
  3. c) Là phương trình bậc nhất một ẩn với a=1/2;b=0
  4. d) Không là phương trình bậc nhất một ẩn
  5. e) Là phương trình bậc nhất một ẩn với a=1;b=−1
  6. f) Không là phương trình bậc nhất một ẩn
  7. g) Là phương trình bậc nhất một ẩn với a=1/3;b=0
  8. h) Không là phương trình bậc nhất một ẩn

Bài 2. Tìm m để các phương trình sau là các phương trình bậc nhất ẩn x 

a) m1x+m+1=0; 

b) m21x+m=0 

c) m+1x2+x1=0; 

d) m3m+1x6=0 

e) m4x+2m=0; 

f) m24xm=0 

g) m1x26x+8=0; 

h) m2m1x+5=0 

Giải 

  1. a) Điều kiện m−4≠0⇔m≠4
  2. b) Điều kiện m^2−4≠0⇔m≠±2
  3. c) Điều kiện m−1=0⇔m=1
  4. d) Điều kiện m≠3;m≠1
  5. e) Điều kiện m−1≠0⇔m≠0
  6. f) Điều kiện m^2−1≠0⇔m≠±1
  7. g) Điều kiện m+1=0⇔m=−1
  8. h) Điều kiện m≠3;m≠−1

Bài 3. Chứng minh rằng các phương trình sau là phương trình bậc nhất một ẩn với mọi giá trị của tham số m 

a) m2+1x3=0  ; 

b) m2+2m+3x1=0 

c) m2+2x+4=0  ; 

d) m22m+2x+m=0 

Giải 

  1. a) Ta có: a=m^2+1>0, ∀m

→ Phương trình luôn là phương trình bậc nhất một ẩn 

  1. b) Ta có: a=m^2+2m+3=(m+1)^2+2>0, ∀m

→ Phương trình luôn là phương trình bậc nhất một ẩn 

  1. c) Ta có: m^2+2>0, ∀m

→ Phương trình luôn là phương trình bậc nhất một ẩn 

  1. d) Ta có: a=m^2−2m+2=(m−1)^2+1>0, ∀m

→ Phương trình luôn là phương trình bậc nhất một ẩn. 

PHIẾU BÀI TẬP SỐ 2 

DẠNG 2: Giải phương trình 

Bài 1. Giải các phương trình sau 

  1. a) 3x−6=0 b) 2x−x+4=0 c) x−4=7−2x
  2. d) 8−2x=9−x e) 2x−4=0 f) 2x+x−3=0
  3. g) 2x−3=5+x h) 7−3x=5−2x

Giải 

  1. a) 3x−6=0⇔3x=6⇔x=2

Vậy phương trình có tập nghiệm S = {2} 

  1. b) 2x−x+4=0⇔ x=4

Vậy phương trình có tập nghiệm S = {4}  

  1. c) x−4=7−2x⇔x=11/3

Vậy phương trình có tập nghiệm S = {11/3} 

  1. d) 8−2x=9−x ⇔x=−1

Vậy phương trình có tập nghiệm S = {-1} 

  1. e) 2x−4=0 ⇔x=2

Vậy phương trình có tập nghiệm S = {2}  

  1. f) 2x+x−3=0 ⇔x=1

Vậy phương trình có tập nghiệm S = {1} 

  1. g) 2x−3=5+x ⇔x=8

Vậy phương trình có tập nghiệm S = {8} 

  1. h) 7−3x=5−2x ⇔x=2

Vậy phương trình có tập nghiệm S = {2} 

Bài 2. Giải các phương trình sau 

... 

Giáo án powerpoint dạy thêm toán 8 cánh diều
Giáo án powerpoint dạy thêm toán 8 cánh diều

Hệ thống có đầy đủ các tài liệu:

  • Giáo án word (350k)
  • Giáo án Powerpoint (400k)
  • Trắc nghiệm theo cấu trúc mới (200k)
  • Đề thi cấu trúc mới: ma trận, đáp án, thang điểm..(200k)
  • Phiếu trắc nghiệm câu trả lời ngắn (200k)
  • Trắc nghiệm đúng sai (250k)
  • Lý thuyết bài học và kiến thức trọng tâm (200k)
  • File word giải bài tập sgk (150k)
  • Phiếu bài tập để học sinh luyện kiến thức (200k)

Nâng cấp lên VIP đê tải tất cả ở tài liệu trên

  • Phí nâng cấp VIP: 800k

=> Chỉ gửi 450k. Tải về dùng thực tế. Nếu hài lòng, 1 ngày sau mới gửi phí còn lại

Cách nâng cấp:

  • Bước 1: Chuyển phí vào STK: 1214136868686 - cty Fidutech - MB(QR)
  • Bước 2: Nhắn tin tới Zalo Fidutech - nhấn vào đây để thông báo và nhận tài liệu

=> Nội dung chuyển phí: Nang cap tai khoan

=> Giáo án toán 8 cánh diều

Xem thêm tài liệu:


Từ khóa: giáo án dạy thêm điện tử toán 8 cánh diều, giáo án dạy thêm powerpoint toán 8 CD, giáo án điện tử dạy thêm toán 8 cánh diều

ĐẦY ĐỦ GIÁO ÁN CÁC BỘ SÁCH KHÁC

GIÁO ÁN WORD LỚP 8 CÁNH DIỀU

GIÁO ÁN POWERPOINT LỚP 8 CÁNH DIỀU

GIÁO ÁN DẠY THÊM LỚP 8 CÁNH DIỀU

CÁCH ĐẶT MUA:

Liên hệ Zalo: Fidutech - nhấn vào đây

Cùng chủ đề

Tài liệu quan tâm

Chat hỗ trợ
Chat ngay