Nội dung chính Toán 6 cánh diều bài 1: Phân số với tử và mẫu là số nguyên
Hệ thống kiến thức trọng tâm bài 1: Phân số với tử và mẫu là số nguyên sách Toán 6 cánh diều. Với các ý rõ ràng, nội dung mạch lạc, đi thẳng vào vấn đề hi vọng người đọc sẽ nắm trọn kiến thức trong thời gian rất ngắn. Nội dung chính được tóm tắt ngắn gọn sẽ giúp thầy cô ôn tập củng cố kiến thức cho học sinh. Bộ tài liệu có file tải về. Mời thầy cô kéo xuống tham khảo
Xem: => Giáo án Toán 6 sách cánh diều
CHƯƠNG V. PHÂN SỐ VÀ SỐ THẬP PHÂN
BÀI 1. PHÂN SỐ VỚI TỬ VÀ MẪU LÀ SỐ NGUYÊN
1. KHÁI NIỆM PHÂN SỐ
Ta có thể ghi kết quả của phép chia (-10) : 3 dưới dạng -103
Tổng quát:
Kết quả cùa phép chia số nguyên a cho số nguyên b khác 0 có thể viết dưới dạng ab. Ta gọi ab là phân số.
Chú ý:
+ Phân số ab đọc là: a phần b;
a là tử số (còn gọi tắt là tử), b là mẫu số (còn gọi tắt là mẫu).
Luyện tập 1
- a) -617: âm sáu phần mười bảy
- b) -12-37: âm mười hai phần âm ba mươi bảy
Luyện tập 2
Cách viết phân số đúng: a) 4-9; b) 0,259
Chú ý:
Mọị số nguyên a có thể viết ở dạng phân số là a1 .
2. PHÂN SỐ BẰNG NHAU
2.1. Khái niệm hai phân số bằng nhau
Ta thấy 14 hình chữ nhật bằng 28 hình chữ nhật. Do đó 14 = 28
Kết luận:
Hai phân số được gọi là bằng nhau nếu chúng cùng biểu diễn một giá trị
2.2. Quy tắc bằng nhau của hai phân số
Ta có 14 = 28 và cũng có 1 . 8 = 4 . 2
Kết luận:
Xét hai phân số ab và cd
Nếu ab = cd thì a . d = b . c. Ngược lại, nếu a . d = b . c thì ab = cd
Trường hợp đặc biệt:
Với hai số a, b là hai số nguyên và b ≠ 0 ta luôn có:
a-b = -ab và -a-b = ab
3. TÍNH CHẤT CƠ BẢN CỦA PHÂN SỐ
3.1. Tính chất cơ bản
- Giá trị của phân số 15 không thay đổi khi ta nhân cả tử và mẫu với 2.
- Giá trị của phân số 424 không thay đổi khi ta chia cả tử và mẫu cho -4.
Tính chất
- Nếu ta nhân cả tử và mẫu của một phân số với cùng một số nguyên khác 0 thì ta được một phân số bằng phân số đã cho.
- Nếu ta chia cả tử và mẫu cùa một phân số cho cùng một ước chung của chúng thì ta được một phân số bằng phân số đã cho.
Lưu ý:
ab = a . m b . m với m ∉ Z, m ≠ 0
ab = a : nb : n với n ∉ƯC(a, b)
Mỗi phân số đều đưa được về một phân số bằng nó và có mẫu là số dương.
3.2. Rút gọn về phân số tối giản
Ví dụ: Các phân số 23 ;-12 là các phân số tối giản.
Phân số 2842 ;-48 là các phân số chưa tối giản
Cách rút gọn:
= = =
- Kết luận:
Muốn đưa một phân số về phân số tối giản ta chia cả tử và mẫu của phân số cho ƯCLN của chúng.
- Các bước thực hiện
+ Bước 1: Tìm ƯCLN của tử và mẫu sau khi bỏ di dấu “-” (nếu có)
+ Bước 2: Chia cả tử và mẫu cho ƯCLN vừa tìm được, ta có phân số tối giản cần tìm
3.3. Quy đồng mẫu nhiều phân số
Các bước thực hiện:
Bước 1. Viết các phân số đã cho về phân số có mẫu dương. Tìm BCNN của các mẫu dương đó để làm mẫu chung
Bước 2. Tìm thừa số phụ của mỗi mẫu (bằng cách chia mẫu chung cho từng mẫu)
Bước 3. Nhân tử và mẫu của mỗi phân số ở Bước 1 với thừa số phụ tương ứng.
Luyện tập 5
2-3 = -23; BCNN(8, 3, 72) = 72
72 : 8 = 9; 72 : 3 = 24; 72 : 72 = 1
Vậy -38=-3.98.9=-2772
2-3=-23=-2.243.24 = -4872
372=3.172.1=372