Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông

Tải giáo án Powerpoint dạy thêm Toán 8 chân trời sáng tạo Chương 3 Bài 5: Hình chữ nhật – Hình vuông. Giáo án điện tử thiết kế hiện đại, đẹp mắt, nhiều bài tập ôn tập, mở rộng kiến thức phong phú. Tài liệu tài về và chỉnh sửa được. Mời thầy cô và các bạn kéo xuống theo dõi.

Xem: => Giáo án toán 8 chân trời sáng tạo

Click vào ảnh dưới đây để xem 1 phần giáo án rõ nét

Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông
Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông
Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông
Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông
Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông
Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông
Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông
Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông
Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông
Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông
Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông
Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 5: Hình chữ nhật – Hình vuông

Các tài liệu bổ trợ khác

Xem toàn bộ: Giáo án powerpoint dạy thêm toán 8 chân trời sáng tạo đủ cả năm

THÂN MẾN CHÀO CÁC EM HỌC SINH ĐẾN VỚI  

BÀI HỌC MỚI 

BÀI 5:  

HÌNH CHỮ NHẬT – HÌNH VUÔNG 

PHIẾU BÀI TẬP SỐ 1 

DẠNG 1: Chứng minh tứ giác là hình chữ nhật, hình vuông 

Bài 1. Cho tam giác ABC vuông cân tại C. Trên các cạnh AC, BC lần lượt lấy các điểm P, Q sao cho AP = CQ. Từ điểm P vẽ PM song song với BC (M AB). Chứng minh PCQM là hình chữ nhật. 

Lời giải 

Ta có: A ̂=B ̂ (vì tam giác ABC vuông cân tại C) (1) 

Vì PM // BC nên (PMA) ̂=B ̂ (hai góc đồng vị) (2) 

Từ (1) và (2) suy ra A ̂=(PMA) ̂ (vì cùng bằng B ̂) 

APM cân tại P AP = PM (hai cạnh bên bằng nhau) 

Ta có: AP = CQ (gt) 

           AP = PM  

PM = CQ 

Mà PM // CQ (PM // BC) 

PCQM là hình bình hành 

Lại có C ̂=90〗^o 

PCQM là hình chữ nhật 

Bài 2. Cho tam giác ABC, các trung tuyến BM và CN cắt nhau tại G. Gọi P là điểm đối xứng của M qua G, Q là điểm đối xứng của N qua G. Tứ giác MNPQ là hình gì? Vì sao? 

Lời giải 

ABC cân tại A  

AC = AB (1) 

BM, CN là đường trung tuyến  

M, N lần lượt là trung điểm của AC, AB (2) 

AM = MC = AB/2;  

AN = NB = AC/2 (2) 

Từ (1) và (2) suy ra AM = MC = AN = NB 

Xét AMB và ANC có  

AB = AC 

A ̂ chung 

AM = AN 

AMB = ANC (g – c – g) MB = NC  

Có P là điểm đối xứng của M qua G GM = GP  

Q là điểm đối xứng của N qua G GN = GQ 

  MP = NQ 

Xét hình tứ giác MNPQ có 

GM = GP 

GN = GQ 

MNPQ là hình bình hành  

(vì G là trung điểm của hai đường chéo MN và PQ) 

Có MP = NQ nên MNPQ là hình chữ nhật 

Bài 3. Cho tam giác ABC vuông tại A, AD là đường phân giác. Kẻ đường cao DE (E AB), đường cao DF (F AC).  

Tứ giác AEDF là hình gì? Vì sao? 

Lời giải 

Xét tứ giác AEDF có A ̂=E ̂=F ̂=90〗^o 

AEDF là hình chữ nhật 

Mà AD là đường phân giác của góc A  

AEDF là hình vuông. 

Bài 4. Cho hình vuông ABCD . Trên cạnh AB, BC, CD, DA, lần lượt lấy các điểm E, F, G, H sao cho AE = BF = CG = DH. Chứng minh EFGH là hình vuông. 

Lời giải 

Vì ABCD là hình vuông AB = BC = DC = AD 

Có AE = BF = CG = DH 

AH = BE = CF = DG (1) 

Xét AEH và BFE có 

AE = BF (gt) 

A ̂ = B ̂ (= 90o) 

AH = BE (cmt) 

AEH = BFE (c – g – c) EH = FE 

Tương tự AEH = CGF (c – g – c) EH = GF 

                AEH = DHG (c – g – c) EH = HG 

EH = FE = GF = HG 

Mặt khác, vì AEH = BFE (AHE) ̂ = (BEF) ̂ 

Suy ra (AHE) ̂ + (BEF) ̂ = 90o (FEH) ̂ = 90o (2). 

Từ (1), (2) suy ra EFGH là hình vuông. 

PHIẾU BÀI TẬP SỐ 2 

DẠNG 2: Vận dung tính chất của  

hình chữ nhật, hình vuông để  

chứng minh các quan hệ bằng nhau, song song, vuông góc, thẳng hàng 

Bài 1. Cho hình chữ nhật ABCD, AB = 40 cm, AD = 30 cm, O là giao điểm của hai đường chéo, AO = 25 cm. Gọi H là chân đường vuông góc kẻ từ A đến BD. Tính độ dài đoạn DH, OH, OB. 

Lời giải 

Áp dụng định lí Pythagore vào ABC có  

BC^2=AB^2+AC^2=40〗^2+30〗^2=2500=50〗^2⇒BC=50 cm  

Vì ABCD là hình chữ nhật nên OA = OB = OC = OD= 25 cm 

 Áp dụng định lí Pythagore vào ADH có 

 AD^2=DH^2+AH^2⇒AH^2=AD^2-DH^2 (1) 

Áp dụng định lí Pythagore vào AOH có 

 AO^2=OH^2+AH^2⇒AH^2=AO^2-OH^2=AO^2-(OD-DH)^2 (2) 

Từ (1) và (2) ta được 

AD^2-DH^2= AO^2-(OD-DH)^2  

30〗^2-DH^2=25〗^2-(〖25〗^2-DH^2 )  

⇔900-DH^2=625-625+50DH-DH^2  

⇔50DH=900  

⇔DH=18 cm  

⇒HO=25-18=7 cm 

Bài 2. Cho hình chữ nhật ABCD có O là giao điểm của hai đường chéo, điểm E thuộc cạnh CD. Đường vuông góc với AE tại A cắt BC ở F.  

Gọi M là trung điểm của EF.  

Chứng minh rằng OM là đường trung trực của AC. 

Lời giải 

Gọi O là giao điểm của hai đường chéo của hình chữ nhật ABCD nên OA = OC (1) 

Xét AEF vuông tại A có AM là đường trung tuyến 

AM = EM = MF 

Xét CEF vuông tại C có CM là đường trung tuyến 

CM = EM = MF 

AM = CM (2) 

Từ (1) và (2) suy ra OM là đường trung trực của AC. 

Bài 3. Cho hình vuông ABCD, trên cạnh BC lấy điểm M, trên cạnh CD lấy điểm N sao cho BM = CN và AM BN. 

Lời giải 

Xét ABM và BCN có 

       AB = BC ( ABCD là hình vuông) 

       (ABM) ̂ = (BCN) ̂ (ABCD là hình vuông) 

       BM = CN (gt) 

ABM = BCN (c.g.c) AM = BN 

(BAM) ̂=(CBN) ̂ 

(ABN) ̂+(CBN) ̂=(ABC) ̂=90〗^o 

(BAM) ̂+(ABN) ̂=90〗^o 

Gọi I là giao điểm của AM và BN 

Xét tam giác ABI có  

(BAI) ̂+(ABI) ̂+(AIB) ̂=180〗^o 

⇒(AIB) ̂=180〗^o-((BAI) ̂+(ABI) ̂ )=180〗^o-90〗^o=90〗^o  

AM BN 

Bài 4. Cho hình vuông ABCD cạnh a. Trên hai cạnh BC, CD lấy  

hai điểm M, N sao cho (MAN) ̂=45〗^o, trên tia đối của tia DC lấy điểm K sao cho DK = BM. Hãy tính: 

  1. a) Số đo góc KAN
  2. b) Chu vi tam giác MCN theo a

... 

Trên chỉ là 1 phần của giáo án. Giáo án khi tải về có đầy đủ nội dung của bài. Đủ nội dung của học kì I + học kì II

Cần nâng cấp lên VIP

Khi nâng cấp lên tài khoản VIP, sẽ tải được tài liệu + nhiều hữu ích khác. Như sau:

  • Giáo án đồng bộ word + PPT: đủ cả năm
  • Trắc nghiệm cấu trúc mới: Đủ cả năm
  • Ít nhất 10 đề thi cấu trúc mới ma trận, đáp án chi tiết
  • Trắc nghiệm đúng/sai cấu trúc mới
  • Câu hỏi và bài tập tự luận
  • Lý thuyết và kiến thức trọng tâm
  • Phiếu bài tập file word
  • File word giải bài tập
  • Tắt toàn bộ quảng cáo
  • Và nhiều tiện khác khác đang tiếp tục cập nhật..

Phí nâng cấp:

  • 1000k/6 tháng
  • 1150k/năm(12 tháng)

=> Khi nâng cấp chỉ gửi 650k. Tải về và dùng thực tế. Thấy hài lòng thì 3 ngày sau mới gửi số phí còn lại

Cách nâng cấp:

  • Bước 1: Chuyển phí vào STK: 1214136868686- Cty Fidutech- Ngân hàng MB
  • Bước 2: Nhắn tin tới Zalo Fidutech - nhấn vào đây để thông báo và nhận các tài liệu

Xem toàn bộ: Giáo án powerpoint dạy thêm toán 8 chân trời sáng tạo đủ cả năm

ĐẦY ĐỦ GIÁO ÁN CÁC BỘ SÁCH KHÁC

GIÁO ÁN WORD LỚP 8 CHÂN TRỜI SÁNG TẠO

GIÁO ÁN POWERPOINT LỚP 8 CHÂN TRỜI SÁNG TẠO

GIÁO ÁN DẠY THÊM LỚP 8 CHÂN TRỜI SÁNG TẠO

CÁCH ĐẶT MUA:

Liên hệ Zalo: Fidutech - nhấn vào đây

Tài liệu giảng dạy

Xem thêm các bài khác

Chat hỗ trợ
Chat ngay