Giáo án powerpoint dạy thêm Toán 8 chân trời Chương 3 Bài 3: Hình thang – Hình thang cân
Tải giáo án Powerpoint dạy thêm Toán 8 chân trời sáng tạo Chương 3 Bài 3: Hình thang – Hình thang cân. Giáo án điện tử thiết kế hiện đại, đẹp mắt, nhiều bài tập ôn tập, mở rộng kiến thức phong phú. Tài liệu tài về và chỉnh sửa được. Mời thầy cô và các bạn kéo xuống theo dõi.
Xem: => Giáo án toán 8 chân trời sáng tạo
Click vào ảnh dưới đây để xem 1 phần giáo án rõ nét
Các tài liệu bổ trợ khác
Xem toàn bộ: Giáo án powerpoint dạy thêm toán 8 chân trời sáng tạo đủ cả năm
XIN CHÀO CÁC EM HỌC SINH! CHÀO MỪNG CÁC EM ĐẾN VỚI BÀI HỌC MỚI HÔM NAY
BÀI 3:
HÌNH THANG – HÌNH THANG CÂN
PHIẾU BÀI TẬP SỐ 1
DẠNG 1: Tính số đo góc của hình thang và hình thang cân
Bài 1. Cho hình thang ABCD (AB // CD) có D ̂=〖60〗^o.
- a) Tính góc A ̂.
Vì AB // DC ⇒(BAD) ̂=(CDx) ̂ (hai góc đồng vị)
Ta có (ADC) ̂+(CDx) ̂=〖180〗^o
⇒(ADC) ̂+(BAD) ̂=〖180〗^o
⇒(BAD) ̂=〖180〗^o-(ADC) ̂=〖180〗^o-〖60〗^o=〖120〗^o
- b) Biết B ̂/D ̂ =4/5. Tính B ̂ và C ̂.
Ta có B ̂/D ̂ =4/5⇒B ̂=4/5.D ̂=4/5.〖60〗^o=〖48〗^o
Xét hình thang ABCD có
A ̂+B ̂+C ̂+D ̂=〖360〗^o
⇒〖120〗^o+〖48〗^o+C ̂+〖60〗^o=〖360〗^o
⇔C ̂+〖228〗^o=〖360〗^o
⇔C ̂=〖360〗^o-〖228〗^o
⇔C ̂=〖132〗^o
Bài 2. Cho hình thang cân ABCD (AB // CD) có A ̂=2C ̂.
Tính các góc của hình thang cân
Vì ABCD là hình thang cân ⇒A ̂=B ̂;C ̂=D ̂
Xét hình thang ABCD có A ̂+B ̂+C ̂+D ̂=〖360〗^o
⇒2A ̂+2C ̂=〖360〗^o
⇔2(A ̂+C ̂ )=〖360〗^o
⇔A ̂+C ̂=〖180〗^o
⇒A ̂+C ̂=B ̂+D ̂=〖180〗^o
Có A ̂=2C ̂⇒2C ̂+C ̂=〖180〗^o⇔3C ̂=〖180〗^o⇔C ̂=〖60〗^o
⇒A ̂=2.〖60〗^o=〖120〗^o
Vậy A ̂=B ̂=〖120〗^o;C ̂=D ̂=〖60〗^o
Bài 3. Cho hình thang ABCD (AB // CD) có A ̂-D ̂=〖20〗^o, B ̂=2C ̂. Tính các góc của hình thang
Lời giải
Vì AB // DC ⇒(BAD) ̂=(CDx) ̂ (hai góc đồng vị)
Ta có (ADC) ̂+(CDx) ̂=〖180〗^o
⇒(ADC) ̂+(BAD) ̂=〖180〗^o
Mà A ̂-D ̂=〖20〗^o
⇒A ̂=(〖180〗^o+〖20〗^o)/2=〖100〗^o;D ̂=A ̂-〖20〗^o=〖100〗^o-〖20〗^o=〖80〗^o
Xét hình thang ABCD có A ̂+B ̂+C ̂+D ̂=〖360〗^o
⇔B ̂+C ̂=〖360〗^o-(A ̂+D ̂ )
⇔B ̂+C ̂=〖360〗^o-〖180〗^o
⇔B ̂+C ̂=〖180〗^o
Có B ̂=2C ̂⇒2C ̂+C ̂=〖180〗^o⇔3C ̂=〖180〗^o⇔C ̂=〖60〗^o⇒B ̂=2.〖60〗^o=〖120〗^o
Bài 4. Cho hình thang cân ABCD (AB // CD) có A ̂=2D ̂.
Tính các góc của hình thang cân
Lời giải
Vì ABCD là hình thang cân ⇒A ̂=B ̂;C ̂=D ̂
Xét hình thang ABCD có A ̂+B ̂+C ̂+D ̂=〖360〗^o
⇒2A ̂+2D ̂=〖360〗^o
⇔2(A ̂+D ̂ )=〖360〗^o
⇔A ̂+D ̂=〖180〗^o
⇒A ̂+D ̂=B ̂+C ̂=〖180〗^o
Có A ̂=3D ̂⇒3D ̂+D ̂=〖180〗^o⇔4D ̂=〖180〗^o⇔D ̂=〖45〗^o⇒A ̂=3.〖45〗^o=〖135〗^o
Vậy A ̂=B ̂=〖135〗^o;C ̂=D ̂=〖45〗^o
PHIẾU BÀI TẬP SỐ 2
DẠNG 2: Chứng minh hình thang, hình thang vuông, hình thang cân
Bài 1. Cho ∆ABC, trên tia AC lấy điểm D sao cho AD=AB. Trên tia AB lấy điểm E sao cho AE=AC. Chứng minh tứ giác BECD là hình thang
Lời giải
AB=AD⇒∆ABD cân tại A
⇒(ABD) ̂=(〖180〗^o-(BAC) ̂)/2 (1)
AE=AC⇒∆AEC cân tại A
⇒(ACE) ̂=(AEC) ̂=(〖180〗^o-(BAC) ̂)/2 (2)
Từ (1), (2) ⇒(ABD) ̂=(AEC) ̂
⇒BD // EC (hai góc ở vị trí đồng vị bằng nhau)
⇒BDCE là hình thang
Bài 2. Cho ∆ABC vuông cân tại A. Ở phía ngoài ∆ABC vẽ ∆BCD vuông cân tại B. Chứng minh tứ giác ABDC là hình thang.
Lời giải
∆ABC vuông cân tại A ⇒(BAC) ̂=〖90〗^o;(ABC) ̂=〖45〗^o
∆BCD vuông cân tại B ⇒(BCD) ̂=〖45〗^o
⇒(ABC) ̂=(BCD) ̂ (=〖45〗^o )
⇒AB // CD (hai góc ở vị trí so le trong bằng nhau)
⇒ABCD là hình thang
Mà (BAC) ̂=〖90〗^o⇒ABCD là hình thang vuông
Bài 3. Cho ∆ABC cân tại A. Đường thẳng song song với BC cắt hai cạnh AB;AC lần lượt tại M;N. Chứng minh BCNM là hình thang cân
Lời giải
∆ABC cân tại A ⇒B ̂=C ̂
Ta có MN // BC ⇒BCNM là hình thang.
Mà B ̂=C ̂
⇒BCNM là hình thang cân
Bài 4. Cho ∆ABC cân tại A. Trên tia đối của tia AB lấy điểm D; trên
tia đối của tia AC lấy điểm E sao cho AD=AE. Tứ giác BCDE là hình gì? Vì sao?
Lời giải
Theo giả thiết ta có các tam giác ABC và ADE là các tam giác cân nên
(AED) ̂=(〖180〗^o-(EAD) ̂)/2 và (ACB) ̂=(〖180〗^o-(CAB) ̂)/2
Mặt khác (EAD) ̂=(BAC) ̂ (đối đỉnh) nên (AED) ̂=(ACB) ̂
Mà hai góc này ở vị trí so le trong nên DE // BC
⇒BCDE là hình thang
Lại có EC=EA+AC=DA+AB=DB nên BCDE là hình thang cân
Bài 5. Cho hình thang ABCD có đáy AB và CD, biết AB=4 cm, CD=8 cm,
BC=5 cm, AD=3 cm. Chứng minh ABCD là hình thang vuông.
Lời giải
Qua B, kẻ BE // AD (E∈DC)
Hình thang ABCD có đáy AB và CD ⇒AB // CD⇒AB // DE
⇒ABDE là hình thang
Mà BE // AD
⇒AD=BE;AB=DE (theo tính chất hình thang có hai cạnh bên song song)
Mà AD=3 cm, AB=4 cm
⇒BE=3 cm, DE=4 cm
Có DC=DE+EC⇒EC=DC-DE=8-4=4 cm
Có BE^2+CE^2=3^2+4^2=25 cm
BC^2=5^2=25 cm
⇒BC^2=BE^2+EC^2⇒∆BEC vuông tại E theo định lí Pythagore đảo)
⇒(BEC) ̂=〖90〗^o
Mà (ADC) ̂=(BEC) ̂ (BE // AD)
⇒(ADC) ̂=〖90〗^o
Mà ABCD là hình thang ⇒ABCD là hình thang vuông
PHIẾU BÀI TẬP SỐ 3
DẠNG 3: Chứng minh các cạnh bằng nhau, các góc bằng nhau, tính diện tích của
hình thang cân
...
Trên chỉ là 1 phần của giáo án. Giáo án khi tải về có đầy đủ nội dung của bài. Đủ nội dung của học kì I + học kì II
Hệ thống có đầy đủ các tài liệu:
- Giáo án word (350k)
- Giáo án Powerpoint (400k)
- Trắc nghiệm theo cấu trúc mới (200k)
- Đề thi cấu trúc mới: ma trận, đáp án, thang điểm..(200k)
- Phiếu trắc nghiệm câu trả lời ngắn (200k)
- Trắc nghiệm đúng sai (250k)
- Lý thuyết bài học và kiến thức trọng tâm (200k)
- File word giải bài tập sgk (150k)
- Phiếu bài tập để học sinh luyện kiến thức (200k)
Nâng cấp lên VIP đê tải tất cả ở tài liệu trên
- Phí nâng cấp VIP: 700k
=> Chỉ gửi 450k. Tải về dùng thực tế. Nếu hài lòng, 1 ngày sau mới gửi phí còn lại
Cách nâng cấp:
- Bước 1: Chuyển phí vào STK: 1214136868686 - cty Fidutech - MB(QR)
- Bước 2: Nhắn tin tới Zalo Fidutech - nhấn vào đây để thông báo và nhận tài liệu
Xem toàn bộ: Giáo án powerpoint dạy thêm toán 8 chân trời sáng tạo đủ cả năm
ĐẦY ĐỦ GIÁO ÁN CÁC BỘ SÁCH KHÁC
GIÁO ÁN WORD LỚP 8 CHÂN TRỜI SÁNG TẠO
GIÁO ÁN POWERPOINT LỚP 8 CHÂN TRỜI SÁNG TẠO
GIÁO ÁN DẠY THÊM LỚP 8 CHÂN TRỜI SÁNG TẠO
CÁCH ĐẶT MUA:
Liên hệ Zalo: Fidutech - nhấn vào đây