Trắc nghiệm câu trả lời ngắn Toán 12 kết nối Bài 6: Vectơ trong không gian

Tài liệu trắc nghiệm dạng câu trả lời ngắn Toán 12 kết nối tri thức Bài 6: Vectơ trong không gian. Dựa trên kiến thức của bài học, bộ tài liệu được biên soạn chi tiết, đúng trọng tâm và rõ ràng. Câu hỏi đa dạng với các mức độ khó dễ khác nhau. Tài liệu có file Word tải về. Thời gian tới, nội dung này sẽ tiếp tục được bổ sung.

Xem: => Giáo án toán 12 kết nối tri thức

BÀI 6. VECTO TRONG KHÔNG GIAN

Câu hỏi 1: Cho hình tứ diện ABCD có trọng tâm G và O là một điểm bất kỳ. Tính  vecto BÀI 6. VECTO TRONG KHÔNG GIAN bằng các vecto BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: BÀI 6. VECTO TRONG KHÔNG GIAN = BÀI 6. VECTO TRONG KHÔNG GIAN BÀI 6. VECTO TRONG KHÔNG GIAN

Câu hỏi 2: Cho hình tứ diện ABCD có trọng tâm G và O là một điểm bất kỳ. Gọi I, J lần lượt là trung điểm của AB, CD. Viết vecto BÀI 6. VECTO TRONG KHÔNG GIAN bằng vecto BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: BÀI 6. VECTO TRONG KHÔNG GIAN = BÀI 6. VECTO TRONG KHÔNG GIAN BÀI 6. VECTO TRONG KHÔNG GIAN

Câu hỏi 3: Cho hình hộp ABCD.A′B′C′D′. Tính tổng các vectoBÀI 6. VECTO TRONG KHÔNG GIAN theo BÀI 6. VECTO TRONG KHÔNG GIAN

BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: BÀI 6. VECTO TRONG KHÔNG GIAN = BÀI 6. VECTO TRONG KHÔNG GIAN

Câu hỏi 4: Cho hình hộp ABCD.A′B′C′D′ và I là giao điểm của BD′ và B′D. Tính vecto BÀI 6. VECTO TRONG KHÔNG GIAN theo BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: BÀI 6. VECTO TRONG KHÔNG GIAN

Câu hỏi 5: Cho hình hộp ABCD.A′B′C′D′ và G là trọng tâm tam giác BA′D. Tính BÀI 6. VECTO TRONG KHÔNG GIAN theo vecto BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: BÀI 6. VECTO TRONG KHÔNG GIAN

Câu hỏi 6: Cho hình tứ diện ABCD có trọng tâm G. Tính BÀI 6. VECTO TRONG KHÔNG GIAN theo BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: ......................................

Câu hỏi 7: Cho tứ diện ABCD. Gọi P, Q là trung điểm của AB và CD. Tính BÀI 6. VECTO TRONG KHÔNG GIAN theo BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: ......................................

Câu hỏi 8: Trong không gian cho điểm O và bốn điểm A,B,C,D không thẳng hàng. Biết A,B,C,D tạo thành hình bình hành. Hãy tính BÀI 6. VECTO TRONG KHÔNG GIAN theo BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: ......................................

Câu hỏi 9: Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB, CD và GG là trung điểm của MN. Tính BÀI 6. VECTO TRONG KHÔNG GIAN theoBÀI 6. VECTO TRONG KHÔNG GIAN 

Trả lời:  ......................................

Câu hỏi 10: Cho hình hộp ABCD.A1B1C1D1. Trong các khẳng định sau, khẳng định nào sai?

I. BÀI 6. VECTO TRONG KHÔNG GIAN

II. BÀI 6. VECTO TRONG KHÔNG GIAN

III. BÀI 6. VECTO TRONG KHÔNG GIAN

IV. BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: ......................................

Câu hỏi 11: Cho hình lăng trụ tam giác ABC.A1B1C1. Đặt  BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN. Tính tổng BÀI 6. VECTO TRONG KHÔNG GIAN - BÀI 6. VECTO TRONG KHÔNG GIAN+ BÀI 6. VECTO TRONG KHÔNG GIAN = ?

Trả lời: ......................................

Câu hỏi 12: Gọi M,N lần lượt là trung điểm của các cạnh AC và BD của tứ diện ABCD. Gọi I là trung điểm đoạn MN và P là 1 điểm bất kỳ trong không gian. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ: BÀI 6. VECTO TRONG KHÔNG GIAN + (2k-1)BÀI 6. VECTO TRONG KHÔNG GIAN + BÀI 6. VECTO TRONG KHÔNG GIAN = BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: ......................................

Câu hỏi 13: Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC. Tìm giá trị của k thích hợp điền vào đẳng thức vectơ: BÀI 6. VECTO TRONG KHÔNG GIAN = kBÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: ......................................

Câu hỏi 14: Cho tứ diện ABCD. Đặt BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; gọi G là trọng tâm của tam giác BCD. Tính BÀI 6. VECTO TRONG KHÔNG GIAN bằng vecto BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: ......................................

Câu hỏi 15: Cho tứ diện ABCD. Đặt BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; gọi M là trung điểm của BC. Tính BÀI 6. VECTO TRONG KHÔNG GIAN bằng vecto BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: ......................................

Câu hỏi 16: Cho tứ diện ABCD. Gọi M và P lần lượt là trung điểm của AB VÀ CD. Đặt BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIANTính BÀI 6. VECTO TRONG KHÔNG GIAN bằng vecto BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: ......................................

Câu hỏi 17: Cho lăng trụ tam giác ABC.A’B’C’ có BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN. Hãy phân tích vecto BÀI 6. VECTO TRONG KHÔNG GIAN qua các vecto BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN; BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: ......................................

Câu hỏi 18: Cho tứ diện ABCD và điểm G thỏa mãn BÀI 6. VECTO TRONG KHÔNG GIAN = BÀI 6. VECTO TRONG KHÔNG GIAN

 (G là trọng tâm của tứ diện). Gọi GO là giao điểm của GA và mp (BCD). Ta có:

BÀI 6. VECTO TRONG KHÔNG GIANk BÀI 6. VECTO TRONG KHÔNG GIAN . Tính k ?

Trả lời: ......................................

Câu hỏi 19: Cho hình chóp S.ABC có SA = SB = SC = AB = AC = a và BC bằng aBÀI 6. VECTO TRONG KHÔNG GIANGóc giữa hai đường thẳng AB và SC bằng bao nhiêu ?

Trả lời:  ......................................

Câu hỏi 20: Cho hình lăng trụ tứ giác ABCD.A'B'C'D'. Mặt phẳng (P) cắt các cạnh bên AA', BB', CC', DD' lần lượt tại I, K, L, M. Xét các vectơ có các điểm đầu là các điểm I, K, L, M và có các điểm cuối là các đỉnh của hình lăng trụ. Hãy chỉ ra các vectơ:

a) Cùng phương với BÀI 6. VECTO TRONG KHÔNG GIAN

b) Cùng hướng với BÀI 6. VECTO TRONG KHÔNG GIAN

Trả lời: ......................................

----------------------------------

----------------------- Còn tiếp -------------------------

=> Giáo án Toán 12 kết nối Bài 6: Vectơ trong không gian

Thông tin tải tài liệu:

Phía trên chỉ là 1 phần, tài liệu khi tải về là file word, có nhiều hơn + đầy đủ đáp án. Xem và tải: Trắc nghiệm dạng câu trả lời ngắn Toán 12 kết nối tri thức cả năm - Tại đây

Tài liệu khác

Tài liệu của bạn

Tài liệu mới cập nhật

Tài liệu môn khác

Chat hỗ trợ
Chat ngay