Đáp án Toán 10 chân trời sáng tạo chương 9 bài 4: Ba đường conic trong mặt phẳng tọa độ (P2)

File đáp án Toán 10 chân trời sáng tạo chương 9 bài 4: Ba đường conic trong mặt phẳng tọa độ (P2) . Toàn bộ câu hỏi, bài tập ở trong bài học đều có đáp án. Tài liệu dạng file word, tải về dễ dàng. File đáp án này giúp kiểm tra nhanh kết quả. Chỉ có đáp án nên giúp học sinh tư duy, tránh học vẹt

Xem: => Giáo án toán 10 chân trời sáng tạo (bản word)

BÀI TẬP CUỐI SGK

Bài 1: Viết phương trình chính tắc của:

  1. Elip có trục lớn bằng 20 và trục nhỏ bằng 16;
  2. Hypebol có tiêu cự 2c = 20 và độ dài trục thực 2a = 12;
  3. Parabol có tiêu điểm F(12; 0).

Đáp án:

  1. a) Ta có 2a = 20; 2b = 16 a = 10; b = 8.

Vậy phương trình chính tắc của elip (E) là:  +  = 1.

  1. b) Ta có: 2c = 20; 2a = 12 c = 10; a = 6 b =  = 8

Vậy phương trình chính tắc của hypebol (H) là:  -  = 1.

  1. c) (P) có tiêu điểm F(; 0) p = 1

Vậy parabol (P) có phương trình: .

Bài 2: Viết phương trình chính tắc của các đường conic dưới đây. Gọi tên là tìm tọa độ các tiêu điểm của chúng.

  1. (C1): 4x2+16y2=1;
  2. (C2): 16x2−4y2=144;
  3. (C3): x=18y2

Đáp án:

  1. a) Ta có: = 1  +  = 1

 a = , b =   c =  =  = 

 Tọa độ các tiêu điểm của () là  = (; 0);  = (; 0).

  1. b) Ta có: = 144  -  = 1

 a = 3, b = 6  c =  =  =

 Tọa độ các tiêu điểm của () là  = (; 0);   = (; 0).

  1. c) Ta có: x =  = 8x

() có dạng  = 2px  p = 4

 Tọa độ tiêu điểm của () là F = (2; 0)

Bài 3: Để cắt một bảng quảng cáo hình elip có trục lớn là 80cm và trục nhỏ là 40 cm từ một tấm ván ép hình chữ nhật có kích thước 80cm x 40 cm, người ta vẽ hình elip đó lên tấm ván ép như hướng dẫn sau:

  • Chuẩn bị:
    • Hai cái đinh, một vòng dây kín không đàn hồi, bút chì.
  • Thực hiện:
  1. Xác định vị trí (hai tiêu điểm của elip) và ghim hai cái đinh lên hai điểm đó trên tấm ván).
  2. Quàng vòng dây qua hai chiếc đinh vào kéo căng tại một điểm M nào đó. Tựa đầu bút chì vào trong vòng dây tại điểm M rồi di chuyển sao cho dây luôn luôn căng. Đầu bút chì vạch lên tấm bìa một đường elip (Xem minh họa trong Hình 15).

Phải ghim hai cái đinh các mép tấm ván ép bao nhiêu xentimet và lấy vòng dây có độ dài là bao nhiêu?

Đáp án:

Ta có: 2a = 80 cm, 2b = 40 cm  a = 40 cm, b = 20cm

 c =  =  =  (cm)

 Hai cái đinh cách mép chiều dài của tâm ván là 20cm, cách mép chiều rộng của tấm ván là 40 -   5,36 cm.

Vòng dây có độ dài là 2a + 2c = 2. 40 + 2.  74,64 cm.

Bài 4: Một nhà vòm chứa máy bay có mặt cắt hình nửa elip cao 8m, rộng 20m (Hình 16).

  1. Chọn hệ tọa độ thích hợp và viết phương trình của elip nói trên.
  2. Tính khoảng cách theo phương thẳng đứng từ một điểm cách chân tường 5m đến nóc nhà vòm.

Đáp án:

  1. Chọn hệ tọa độ như hình vẽ:

Ta có: b = 8m, 2a = 20 m  a = 10 m

Vậy phương trình của elip (E) là:  +  = 1

  1. b) Điểm A cách chân tường 5m nên A = (5; 0). Ta có độ dài AB chính là khoảng cách từ điểm A đến nóc nhà vòm.

Gọi B(5; ). Vì B  (E) nên thay tọa độ B vào phương trình (E), ta được: 

 +  = 1

  =   6,9 

Vậy AB = 6,9 m.

Bài 5: Một tháp làm nguội của một nhà máy có mặt cắt là hình hypebol có phương trình là  -  = 1 (Hình 17). Biết chiều cao của tháp là 150m và khoảng cách từ nóc tháp đến tấm đối xứng của hypebol bằng 23 khoảng cách từ tâm đối xứng đến đáy. Tính bán kính nóc và bán kính đáy của tháp.

Đáp án:

Theo bài ra ta có: OA + OB = 150m, OA =  OB  OA = 60m, OB = 90m.

 A(0; 60), B(0; -90).

Thay y = 60 vào phương trình (H), ta được:  -  = 1 

  = 2384  x =  

 Bán kính nóc bằng  m.

Thay y = -90 vào phương trình (H), ta được:  -  = 1 

  = 4384 

 x =  

 Bán kính đáy bằng  m.

Bài 6: Một cái cầu có dây cáp treo hình parabol, cầu dài 100m và được nâng đỡ bởi những thanh thẳng đứng treo từ cáp xuống, thanh dài nhất là 30m, thanh ngắn nhất là 6 m (Hình 18). Tính chiều dài của thanh cách điểm giữa cầu 18m.

Đáp án:

Chọn hệ tọa độ như hình vẽ:

Theo bài ra ta có: AO = 6m, AD = 50 m, BD = 30m ⇒ điểm B có tọa độ B(24; 50).

Gọi phương trình của parabol (P) là  = 2px.

Vì B(24; 50)  (P) nên thay tọa độ điểm B vào phương trình (P), ta được:

 = 2p. 24  p = 

 Phương trình (P) là:  = x

Ta có: Độ dài đoạn ME chính là chiều dài của thanh cách điểm giữa cầu 18m. Gọi E = (m, 18), vì E  (P) nên thay tọa độ E vào phương trình P, ta được:  = . m 

 m = 3,1104

 ME = 6 + 3,1104 = 9,1104 (m)

Vậy thanh cáp cách điểm giữa cầu 18m có chiều dài là 9,1104m

=> Giáo án toán 10 chân trời bài 4: Ba đường conic trong mặt phẳng tọa độ (6 tiết)

Thông tin tải tài liệu:

Phía trên chỉ là 1 phần, tài liệu khi tải về là file word, có nhiều hơn + đầy đủ đáp án. Xem và tải: File word đáp án Toán 10 chân trời sáng tạo - Tại đây

Tài liệu khác

Tài liệu của bạn

Tài liệu mới cập nhật

Tài liệu môn khác

Chat hỗ trợ
Chat ngay