Giáo án điện tử Toán 11 cánh diều Chương 4 Bài 3: Đường thẳng và mặt phẳng song song
Bài giảng điện tử Toán 11 cánh diều. Giáo án powerpoint Chương 4 Bài 3: Đường thẳng và mặt phẳng song song. Giáo án thiết kế theo phong cách hiện đại, nội dung đầy đủ, đẹp mắt, tạo hứng thú học tập cho học sinh. Thầy, cô giáo có thể tham khảo.
Xem: => Giáo án toán 11 cánh diều
Click vào ảnh dưới đây để xem 1 phần giáo án rõ nét
Các tài liệu bổ trợ khác
Xem toàn bộ: Giáo án điện tử toán 11 cánh diều
CHÀO MỪNG CÁC EM ĐẾN VỚI BUỔI HỌC HÔM NAY!
KHỞI ĐỘNG
Trong thực tiễn, ta thường gặp nhiều đồ dùng, vật thể gợi nên hình ảnh đường thẳng song song với mặt phẳng. Chẳng hạn, thanh barrier song song với mặt phẳng (Hình 44).
Thế nào là đường thẳng song song với mặt phẳng trong không gian?
BÀI 3. ĐƯỜNG THẲNG VÀ MẶT PHẲNG SONG SONG
NỘI DUNG BÀI HỌC
Đường thẳng song song với mặt phẳng
Điều kiện và tính chất
- ĐƯỜNG THẲNG SONG SONG VỚI MẶT PHẲNG
Thảo luận nhóm đôi
HĐ1
- a) Trong Hình 44, thanh barrier và mặt phẳng gợi nên hình ảnh đường thẳng d và mặt phẳng (P). Cho biết đường thẳng d và mặt phẳng (P) có điểm chung hay không.
- b) Cho đường thẳng d và mặt phẳng (P). Hãy cho biết các khả năng có thể xảy ra đối với số điểm chung của d và (P).
Giải
- a) Trong Hình 44 đường thẳng d và mặt phẳng (P) không có điểm chung.
- b) Các khả năng xảy ra với số điểm chung của d và (P) là:
- Vô số điểm chung
- 1 điểm chung
- Không có điểm chung.
Nhận xét
Có 3 khả năng có thể xảy ra đối với số điểm chung của (P) và d:
- d ⊂ (P) hay (P) ⊃ d ⇔ d và (P) có hai điểm chung phân biệt trở lên.
- d ∩ (P) = A ⇔d và (P) có 1 điểm chung duy nhất là A.
- d // (P) ⇔ d và (P) không có điểm chung.
KẾT LUẬN
Đường thẳng a song song với mặt phẳng (P) nếu chúng không có điểm chung.
Ví dụ 1
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Chứng minh rằng AB // (SCD).
Giải
Nếu đường thẳng AB và mặt phẳng (SCD) có điểm chung là M thì điểm M nằm trên cả hai mặt phẳng (ABCD) và (SCD) M CD.
Do đó, M là điểm chung của hai đường thẳng AB và CD. Điều này không xảy ra vì AB // CD.
Vậy AB // (SCD).
Luyện tập 1
Quan sát các xà ngang trên sân tập thể dục ở Hình 47. Hãy cho biết vị trí tương đối của các xà ngang đó với mặt sân.
Giải
Xà ngang song song với mặt sân
- ĐIỀU KIỆN VÀ TÍNH CHẤT
Thảo luận nhóm đôi
HĐ2
Cho đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng a’ nằm trong (P) (Hình 48). Gọi (Q) là mặt phẳng xác định bởi hai đường thẳng song song a, a’.
- a) Giả sử a cắt (P) tại M. Đường thẳng a có cắt đường thẳng a’ tại M hay không?
- b) Nêu vị trí tương đối của đường thẳng a và mặt phẳng (P). Vì sao?
Giải
- a) Do a’ ⊂ (P) và a’ ⊂ (Q) nên (P) ∩ (Q) = a’.
Mà a cắt (P) tại M nên M ∈ (P)
Lại có M ∈ a, a ⊂ (Q) nên M ∈ (Q)
Suy ra M là giao điểm của (P) và (Q).
Do đó giao tuyến a’ của hai mặt phẳng đi qua điểm M.
Vậy đường thẳng a cắt đường thẳng a’ tại M.
- b) Theo câu a, nếu a cắt (P) tại M thì đường thẳng a và đường thẳng a’ cắt nhau tại M.
Điều này là mâu thuẫn với giả thiết là hai đường thẳng a và a’ song song.
Do đó a không có điểm chung với (P) nên a // (P).
ĐỊNH LÍ 1 (Dấu hiệu nhận biết một đường thẳng song song với một mặt phẳng):
Nếu đường thẳng a không nằm trong mặt phẳng (P) và song song với một đường thẳng nằm trong (P) thì a song song với (P).
Sử dụng định lí để chứng minh đường thẳng song song với mặt phẳng, ta chỉ cần chỉ ra điều gì?
a // a’
a ⊄ (P)
a' ⊂ (P)
a // (P)
Sử dụng Định lí để trình bày Ví dụ 2 (SGK - tr.102)
Ví dụ 2
Cho hình chóp S.ABCD. Gọi M, N lần lượt là trung điểm của các cạnh SA, SC. Chứng minh rằng đường thẳng MN song song với mặt phẳng (ABCD).
Giải
Vì M, N lần lượt là trung điểm của các cạnh SA, SC nên MN là đường trung bình của SAC
MN // AC mà AC (ABCD)
MN // (ABCD) (theo Định lí 1)
Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, AD. Các đường thẳng MN, NP, PM có song song với mặt phẳng (BCD) không? Vì sao?
Giải
Xét ∆ABC có M, N lần lượt là trung điểm của AB, AC nên MN là đường trung bình của tam giác MN // BC.
Lại có BC ⊂ (BCD), MN ⊄ (BCD) MN // (BCD).
Chứng minh tương tự: NP // CD, CD ⊂ (BCD)
NP // (BCD).
Tương tự, MP // BD mà BD ⊂ (BCD) MP // (BCD).
Thực hiện nhóm đôi
HĐ3
Cho đường thẳng a song song với mặt phẳng (P). Cho mặt phẳng (Q) chứa a và cắt (P) theo giao tuyến b. (Hình 51).
- Giả sử a cắt b tại M. Đường thẳng a có cắt mặt phẳng (P) tại M hay không?
- Nêu vị trí tương đối của hai đường thẳng a và b. Vì sao?
Giải
- a) Ta có a ∩ b = {M} nên M ∈ b
Mà b ⊂ (P), do đó M ∈ (P).
Lại có M ∈ a.
Vậy đường thẳng a cắt mặt phẳng (P) tại M.
- b) Theo câu a, nếu a cắt b tại M thì a cắt (P) tại M, điều này mâu thuẫn với giả thiết đường thẳng a song song với mặt phẳng (P).
Do đó a và b không cắt nhau và cùng nằm trong mặt phẳng (Q) a // b.
Vậy hai đường thẳng a và b song song với nhau.
ĐỊNH LÍ 2 (Tính chất của đường thẳng song song với mặt phẳng)
Trên chỉ là 1 phần của giáo án. Giáo án khi tải về có đầy đủ nội dung của bài. Đủ nội dung của học kì I + học kì II
Hệ thống có đầy đủ các tài liệu:
- Giáo án word (350k)
- Giáo án Powerpoint (400k)
- Trắc nghiệm theo cấu trúc mới (200k)
- Đề thi cấu trúc mới: ma trận, đáp án, thang điểm..(200k)
- Phiếu trắc nghiệm câu trả lời ngắn (200k)
- Trắc nghiệm đúng sai (250k)
- Lý thuyết bài học và kiến thức trọng tâm (200k)
- File word giải bài tập sgk (150k)
- Phiếu bài tập để học sinh luyện kiến thức (200k)
Nâng cấp lên VIP đê tải tất cả ở tài liệu trên
- Phí nâng cấp VIP: 800k
=> Chỉ gửi 450k. Tải về dùng thực tế. Nếu hài lòng, 1 ngày sau mới gửi phí còn lại
Cách nâng cấp:
- Bước 1: Chuyển phí vào STK: 1214136868686 - cty Fidutech - MB(QR)
- Bước 2: Nhắn tin tới Zalo Fidutech - nhấn vào đây để thông báo và nhận tài liệu
Xem toàn bộ: Giáo án điện tử toán 11 cánh diều
ĐẦY ĐỦ GIÁO ÁN CÁC BỘ SÁCH KHÁC
GIÁO ÁN WORD LỚP 11 CÁNH DIỀU
GIÁO ÁN POWERPOINT LỚP 11 CÁNH DIỀU
GIÁO ÁN CHUYÊN ĐỀ LỚP 11 CÁNH DIỀU
Giáo án chuyên đề Công nghệ cơ khí 11 cánh diều đủ cả năm
Giáo án chuyên đề Tin học 11 Khoa học máy tính cánh diều đủ cả năm
Giáo án chuyên đề Tin học 11 Tin học ứng dụng cánh diều đủ cả năm
Giáo án chuyên đề Âm nhạc 11 cánh diều đủ cả năm
Giáo án chuyên đề Kinh tế pháp luật 11 cánh diều đủ cả năm
GIÁO ÁN DẠY THÊM LỚP 11 CÁNH DIỀU
Giáo án dạy thêm toán 11 cánh diều đủ cả năm
Giáo án dạy thêm ngữ văn 11 cánh diều đủ cả năm
CÁCH ĐẶT MUA:
Liên hệ Zalo: Fidutech - nhấn vào đây