Giáo án powerpoint dạy thêm Toán 8 cánh diều Chương 7 Bài tập cuối chương
Tải giáo án Powerpoint dạy thêm Toán 8 cánh diều Chương 7 Bài tập cuối chương VII. Giáo án điện tử thiết kế hiện đại, đẹp mắt, nhiều bài tập ôn tập, mở rộng kiến thức phong phú. Tài liệu tài về và chỉnh sửa được. Mời thầy cô và các bạn kéo xuống theo dõi.
Xem: => Giáo án toán 8 cánh diều
Click vào ảnh dưới đây để xem 1 phần giáo án rõ nét












Các tài liệu bổ trợ khác
Xem toàn bộ: Giáo án powerpoint dạy thêm toán 8 cánh diều đủ cả năm
CHÀO MỪNG CÁC EM
ĐẾN VỚI TIẾT HỌC
HÔM NAY!
CHƯƠNG VII. PHƯƠNG TRÌNH
BẬC NHẤT MỘT ẨN
BÀI TẬP CUỐI CHƯƠNG VII
LUYỆN TẬP
PHIẾU BÀI TẬP SỐ 1
Bài 1. Trong các phương trình sau, phương trình nào là phương trình bậc nhất một ẩn?
- a) x–10=0 b) 7–3x=0 c) 4x^2–10=0
- d) −5/2x=0 e) 4/x+2=0 f) 0x+0=0
- g) x/2−1=0 h) 2x–3/4=0 k) 2x^3–3/4=0
Giải
Phương trình ở ý a; b; d; g; h là các phương trình bậc nhất 1 ẩn
(vì có dạng ax + b = 0 với a; b là hai số đã cho, a ≠ 0)
Bài 2. Với giá trị nào của m thì mỗi phương trình sau là phương trình bậc nhất một ẩn?
- a) 1/5x+m−1=0 b) (m+3)x−3/4=0
- c) (m−2)x+5=0 d) (x−3)m−1=0
- e) (2x+3)2m−5=0 f) mx+m−2=0
Giải
- a) 1/5x+m−1=0 là phương trình bậc nhất 1 ẩn x với ∀m∈R vì có hệ số a=1/5≠0
- b) (m+3)x−3/4=0 là phương trình bậc nhất 1 ẩn x khi
m+3≠0⇔m≠−3
- c) (m−2)x+5=0 là phương trình bậc nhất 1 ẩn x khi
m−2≠0⇔m≠2
- d) (x−3)m−1=0⇔mx−(3m+1)=0 là phương trình bậc nhất 1 ẩn x khi m≠0
- e) (2x+3)2m−5=0⇔4mx+6m−5=0 là phương trình bậc nhất 1 ẩn x khi 4m≠0⇔±m≠0
- f) mx+m−2=0 là phương trình bậc nhất 1 ẩn x khi m≠0
Bài 3. Giải các phương trình sau:
- a) 4x+5=1 b) −5x+2=14 c) 6x−3=8x+9
- d) 7x−5=13−5x e) 2−3x=5x+10 f) 13−7x=4x−20
Giải
- a) 4x+5=1⇔4x=1−5⇔4x=−4⇔x=−4:4⇔x=−1 .
Tập nghiệm S={−1}
- b) −5x+2=14⇔5x=2−14⇔5x=−12⇔x=−12/5.
Tập nghiệm S={−12/5}
- c) 6x−3=8x+9⇔8x−6x=−3−9⇔2x=−12⇔x=−12:2
⇔x=−6. Tập nghiệm S={−6}
- d) 7x−5=13−5x⇔7x+5x=13+5⇔12x=18⇔x=18/12⇔x=3/2.
Tập nghiệm S={3/2}
- e) 2−3x=5x+10⇔5x+3x=2−10⇔8x=−8⇔x=−8:8⇔x=−1.
Tập nghiệm S={−1}
- f) 13−7x=4x−20⇔4x+7x=13+20⇔11x=33⇔x=33:11
⇔x=3. Tập nghiệm S={3}
Bài 4. Giải các phương trình sau:
- a) 2(7x+10)+5=3(2x−3)−9x
- b) (x+1)(2x−3)=(2x−1)(x+5)
- c) 2x+x(x+1)(x−1)=(x+1)(x^2−x+1)
- d) (x−1)^3−x(x+1)^2=5x(2−x)−11(x+2)
Giải
- a) ⇔17x=−34⇔x=−2. Tập nghiệm S={−2}
- b) ⇔−10x=−2⇔x=1/5. Tập nghiệm S={1/5}
- c) ⇔2x+x^3−x−x^3=1⇔x=1. Tập nghiệm S={1}
- d) ⇔3x=−21⇔x=−7. Tập nghiệm S={−7}
Bài 5. Giải các phương trình sau:
- a) x−23/24+x−23/25=x−23/26+x−23/27
- b) (x+2/98+1)+(x+3/97+1)=(x+4/96+1)+(x+5/95+1)
- c) x+1/1998+x+2/1997=x+3/1996+x+4/1995
- d) 201−x/99+203−x/97+205−x/95+3=0
- e) x−45/55+x−47/53=x−55/45+x−53/47
Giải
- a) x−23/24+x−23/25=x−23/26+x−23/27⇔(x−23)(1/24+1/25−1/26−1/27)=0
⇔x−23=0⇔x=23. Tập nghiệm S={23}
- b) (x+2/98+1)+(x+3/97+1)=(x+4/96+1)+(x+5/95+1)
⇔x+100/98+x+100/97−x+100/96−x+100/95=0
⇔(x+100)(1/98+1/97−1/96−1/95)=0⇔x+100=0⇔x=−100.
Tập nghiệm S={−100}
- c) x+1/1998+x+2/1997=x+3/1996+x+4/1995
⇔(x+1/1998+1)+(x+2/1997+1)−(x+3/1996+1)−(x+4/1995+1)=0
⇔x+1999/1998+x+1999/1997−x+1999/1996−x+1999/1995=0
⇔(x+1999)(1/1998+1/1997−1/1996−1/1995)=0
⇔x+1999=0⇔x=−1999. Tập nghiệm S={−1999}
- d) 201−x/99+203−x/97+205−x/95+3=0
⇔(201−x/99+1)+(203−x/97+1)+(205−x/95+1)=0
⇔300−x/99+300−x/97+300−x/95=0
⇔(300−x)(1/99+1/97+1/95)=0
⇔300−x=0⇔x=300. Tập nghiệm S={300}
- e) x−45/55+x−47/53=x−55/45+x−53/47
⇔(x−45/55−1)+(x−47/53−1)−(x−55/45−1)−(x−53/47−1)=0
⇔x−100/55+x−100/53−x−100/45−x−100/47=0
⇔(x−100)(1/55+1/53−1/45−1/47)=0
⇔x−100=0⇔x=100. Tập nghiệm S={100}
Bài 6. Giải các phương trình sau:
- a) x+24/1996+x+25/1995+x+26/1994+x+27/1993+x+2036/4=0 b) x−342/15+x−323/17+x−300/19+x−273/21=10
- c) x+1/15+x+2/7+x+4/4+7=0
Giải
- a) x+24/1996+x+25/1995+x+26/1994+x+27/1993+x+2036/4=0⇔x+24/1996+x+25/1995+x+26/1994+x+27/1993+x+2020+16/4=0
⇔x+24/1996+1+x+25/1995+1+x+26/1994+1+x+27/1993+1+x+2020/4=0
⇔x+2020/1996+x+2020/1995+x+2020/1994+x+2020/1993+x+2020/4=0
⇔(x+2020)(1/1996+1/1995+1/1994+1/1993+1/4)=0
⇔x+2020=0⇔x=−2020. Tập nghiệm S={−2020}
- b) x−342/15+x−323/17+x−300/19+x−273/21=10
⇔x−342/15−1+x−323/17−2+x−300/19−3+x−273/21−4=0
⇔x−357/15+x−357/17+x−357/19+x−357/21=0
⇔(x−357)(1/15+1/17+1/19+1/21)=0
⇔x−357=0⇔x=357. Tập nghiệm S={357}
- c) x+1/15+x+2/7+x+4/4+7=0
⇔x+1/15+1+x+2/7+2+x+4/4+4=0
⇔x+16/15+x+16/7+x+16/4=0
⇔(x+16)(1/15+1/7+1/4)=0⇔x+16=0⇔x=−16
Vậy phương trình có tập nghiệm S={−16}.
PHIẾU BÀI TẬP SỐ 2
...
Trên chỉ là 1 phần của giáo án. Giáo án khi tải về có đầy đủ nội dung của bài. Đủ nội dung của học kì I + học kì II
Hệ thống có đủ tài liệu:
=> Có thể chọn nâng cấp VIP với phí là 1050k để tải tất cả tài liệu ở trên
- Chỉ gửi 500k. Tải về dùng thực tế, 1 ngày sau mới gửi số còn lại.
Cách tải hoặc nâng cấp:
- Bước 1: Chuyển phí vào STK: 1214136868686 - cty Fidutech - MB
- Bước 2: Nhắn tin tới Zalo Fidutech - nhấn vào đây để thông báo và nhận tài liệu
Xem toàn bộ: Giáo án powerpoint dạy thêm toán 8 cánh diều đủ cả năm
ĐẦY ĐỦ GIÁO ÁN CÁC BỘ SÁCH KHÁC
GIÁO ÁN WORD LỚP 8 CÁNH DIỀU
GIÁO ÁN POWERPOINT LỚP 8 CÁNH DIỀU
GIÁO ÁN DẠY THÊM LỚP 8 CÁNH DIỀU
CÁCH ĐẶT MUA:
Liên hệ Zalo: Fidutech - nhấn vào đây