Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác
Đồng bộ giáo án word và powerpoint (ppt) Bài 7: Trường hợp đồng dạng thứ hai của tam giác. Thuộc chương trình Toán 8 cánh diều. Giáo án được biên soạn chỉnh chu, hấp dẫn. Nhằm tạo sự lôi cuốn và hứng thú học tập cho học sinh.
Click vào ảnh dưới đây để xem giáo án WORD rõ nét
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-1.jpg)
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-2.jpg)
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-3.jpg)
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-4.jpg)
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-5.jpg)
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-6.jpg)
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-7.jpg)
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-8.jpg)
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-9.jpg)
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-10.jpg)
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-11.jpg)
![Giáo án và PPT Toán 8 cánh diều Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2024-10/kenhgiaovien_c8_b7_truong_hop_dong_dang-12.jpg)
Giáo án ppt đồng bộ với word
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide1_252.jpg)
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide2_252.jpg)
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide3_251.jpg)
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide4_251.jpg)
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide5_251.jpg)
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide6_251.jpg)
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide7_251.jpg)
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide8_251.jpg)
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide9_251.jpg)
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide10_249.jpg)
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide11_248.jpg)
![Giáo án điện tử Toán 8 cánh diều Chương 8 Bài 7: Trường hợp đồng dạng thứ hai của tam giác](https://kenhgiaovien.com/sites/default/files/styles/700xauto/public/2023-12/slide12_248.jpg)
Còn nữa....
Các tài liệu bổ trợ khác
Xem toàn bộ: Trọn bộ giáo án và PPT Toán 8 cánh diều
BÀI 7. TRƯỜNG HỢP ĐỒNG DẠNG THỨ HAI CỦA TAM GIÁC (2 tiết)
HOẠT ĐỘNG KHỞI ĐỘNG
GV đặt câu hỏi yêu cầu HS thảo luận và trả lời:
Bạn Hoàng và bạn Thu cùng vẽ bản đồ một ốc đảo và ba vị trí với tỉ lệ bản đồ khác nhau. Bạn Hoàng dùng ba điểm A, B, C lần lượt biểu thị các vị trí thứ nhất, thứ hai, thứ ba (H.68a). Bạn Thu dùng ba điểm A’, B’, C’ lần lượt biểu thị ba vị trí đó (H.68b)
Câu hỏi: Hai tam giác A’B’C’ và ABC có đồng dạng hay không ?
HOẠT ĐỘNG HÌNH THÀNH KIẾN THỨC
Hoạt động 1: Trường hợp đồng dạng thứ hai: Cạnh – góc – cạnh
- GV hướng dẫn, cho HS quan sát Hình 68 và đọc yêu cầu của HĐ1
- GV đưa ra câu hỏi: Em hãy phát biểu định lí của trường hợp đồng dạng thứ hai: Cạnh – góc – cạnh.
- GV cho HS tìm hiểu cách chứng minh định lí theo hướng dẫn của SGK
- HS thực hiện Ví dụ 1
- GV cho HS thảo luận nhóm đôi, đọc và thực hiện Luyện tập 1
- GV hướng dẫn HS làm Ví dụ 2 để củng cố trường hợp đồng dạng thứ hai của tam giác
- GV giao nhiệm vụ cho HS thực hiện Luyện tập 2 trong thời gian 5 phút.
Sản phẩm dự kiến:
HĐ1
a) Ta có:
b)
Định lí
Nếu hai cạnh của tam giác này tỉ lệ với hai cạnh của tam giác kia và hai góc tạo bởi các cặp cạnh đó bằng nhau thì hai tam giác đó đồng dạng.
![Tech12h](/sites/default/files/ck5/2024-10/21/{BDAA01FC-88E7-4467-AF1F-5C43B7606032}.png)
Chứng minh định lí: SGK – tr.79
Ví dụ 1: SGK – tr.80
Hướng dẫn giải: SGK – tr.80
Luyện tập 1
Ta có:
Xét hai tam giác và
, ta có:
∽
(các cặp góc tương ứng)
Ví dụ 2: SGK – tr.80
Hướng dẫn giải: SGK – tr.80
Luyện tập 2
Ta có:
Xét hai tam giác và
, ta có:
∽
(hai cặp góc tương ứng)
Hoạt động 2. Áp dụng trường hợp đồng dạng thứ hai của tam giác vào tam giác vuông.
- GV yêu cầu HS thảo luận và thực hiện HĐ2.
- GV đặt câu hỏi: Em hãy trình bày định lí chứng minh hai tam giác vuông đồng dạng bằng hai cạnh góc vuông?
- HS thự hiện Ví dụ 3 và trình bày lại cách thực hiện vào vở theo hướng dẫn của SGK.
- GV triển khai Luyện tập 3 và cho HS thảo luận nhóm ba thực hiện yêu cầu.
Sản phẩm dự kiến:
HĐ2
Xét và
có:
và
=> ∽
(c.g.c)
Định lí
Nếu hai cạnh góc vuông của tam giác vuông này tỉ lệ với hai cạnh góc vuông của tam giác vuông kia thì hai tam giác vuông đó đồng dạng.
Ví dụ 3: SGK – tr.81
Hướng dẫn giải: SGK – tr.81
Luyện tập 3
Ta có: =>
và
lần lượt vuông tại
và
nên
Xét và
có:
=>
∽
Suy ra .
HOẠT ĐỘNG LUYỆN TẬP
Từ nội dung bài học,GV yêu cầu HS hoàn thành các bài tập trắc nghiệm sau:
Câu 1: Tam giác ABC vuông tại A có đường cao AH. Cho biết AB = 3cm; AC = 4cm. Chọn kết luận không đúng.
A. HA = 2,4 cm
B. HB = 1,8 cm
C. HC = 3,2 cm
D. BC = 6 cm
Câu 2: Cho tam giác ABC vuông tại A, đường cao AH chia cạnh BC thành hai đoạn thẳng HB = 7cm và HC = 18cm. Điểm E thuộc đoạn thẳng HC sao cho đường thẳng đi qua E và vuông góc với BC chia tam giác ABC thành hai phần có diện tích bằng nhau. Tính CE.
A. 15 cm
B. 12 cm
C. 10 cm
D. 8 cm
Câu 3: Tam giác ABC vuông tại A có đường cao AH. Cho biết AB = 3cm; AC = 4cm. Tính độ dài các đoạn thẳng HA, HB.
A. HA = 2,4cm; HB = 1,2cm
B. HA = 2cm; HB = 1,8cm
B. HA = 2cm; HB = 1,2cm
D. HA = 2,4cm; HB = 1,8cm
Câu 4: Cho tam giác nhọn ABC có C=40∘. Vẽ hình bình hành ABCD. Gọi AH, AK theo thứ tự là các đường cao của các tam giác ABC, ACD. Tính số đo góc HKC.
A. 30∘
B. 40∘
C. 45∘
D. 50∘
Câu 5: Cho tam giác ABC có AB = 8cm, AC = 16cm. Điểm D thuộc cạnh AB sao cho BD = 2cm. Điểm E thuộc cạnh AC sao cho CE = 13cm. Chọn câu đúng.
A. ΔEDA ~ ΔABC
B. ΔADE ~ ΔABC
C. ΔAED ~ ΔABC
D. ΔDEA ~ ΔABC
Sản phẩm dự kiến:
Câu 1 - D | Câu 2 - A | Câu 3 - D | Câu 4 - D | Câu 5 - C |
HOẠT ĐỘNG VẬN DỤNG
Vận dụng kiến thức, GV yêu cầu HS hoàn thành bài tập sau:
Câu 1: Cho Hình 78, biết AH2 = BH.CH. Chứng minh:
a) ∆HAB ᔕ ∆HCA;
b) Tam giác ∆ABC vuông tại A.
Câu 2: Đố. Chỉ sử dụng thước thẳng có chia đơn vị đến milimét và thước đo góc, làm thế nào đo được khoảng cách giữa hai vị trí B, C trên thực tế, biết rằng có vị trí A thoả mãn AB = 20m, AC = 50 m, . Bạn Vy làm như sau: Vẽ tam giác A’B’C’ có A’B’ = 2cm, A’C’ = 5cm, Bạn Vy lấy thước đo khoảng cách giữa hai điểm B’, C’ và nhận được kết quả B’C’ ≈ 6,6cm. Từ đó, bạn Vy kết luận khoảng cách giữa hai vị trí B, C trên thực tế khoảng 66m. Em hãy giải thích tại sao bạn Vy có thể kết luận như vậy.
Trên chỉ là 1 phần của giáo án. Giáo án khi tải về có đầy đủ nội dung của bài. Đủ nội dung của học kì I + học kì II
Hệ thống có đầy đủ các tài liệu:
- Giáo án word (350k)
- Giáo án Powerpoint (400k)
- Trắc nghiệm theo cấu trúc mới (200k)
- Đề thi cấu trúc mới: ma trận, đáp án, thang điểm..(200k)
- Phiếu trắc nghiệm câu trả lời ngắn (200k)
- Trắc nghiệm đúng sai (250k)
- Lý thuyết bài học và kiến thức trọng tâm (200k)
- File word giải bài tập sgk (150k)
- Phiếu bài tập để học sinh luyện kiến thức (200k)
Nâng cấp lên VIP đê tải tất cả ở tài liệu trên
- Phí nâng cấp VIP: 800k
=> Chỉ gửi 450k. Tải về dùng thực tế. Nếu hài lòng, 1 ngày sau mới gửi phí còn lại
Cách nâng cấp:
- Bước 1: Chuyển phí vào STK: 1214136868686 - cty Fidutech - MB(QR)
- Bước 2: Nhắn tin tới Zalo Fidutech - nhấn vào đây để thông báo và nhận tài liệu
Xem toàn bộ: Trọn bộ giáo án và PPT Toán 8 cánh diều
Giáo án Toán 8 mới có đủ kết nối, cánh diều, chân trời