Giáo án dạy thêm Toán 12 kết nối Bài 3: Đường tiệm cận của đồ thị hàm số

Dưới đây là giáo án Bài 3: Đường tiệm cận của đồ thị hàm số. Bài học nằm trong chương trình Toán 12 kết nối tri thức. Tài liệu dùng để dạy thêm vào buổi 2 - buổi chiều. Dùng để ôn tập và củng cố kiến thức cho học sinh. Giáo án là bản word, có thể tải về để tham khảo.

Xem: => Giáo án toán 12 kết nối tri thức

Các tài liệu bổ trợ khác

Xem toàn bộ: Giáo án dạy thêm toán 12 kết nối tri thức đủ cả năm

Ngày soạn: …/…/…

Ngày dạy: …/…/…

BÀI 3 – ĐƯỜNG TIỆM CẬN CỦA ĐỒ THỊ HÀM SỐ

I. YÊU CẦU CẦN ĐẠT:

1. Kiến thức, kĩ năng:

Sau bài này học sinh sẽ:

- Ôn lại và củng cố kiến thức về giá trị lớn nhất, giá trị nhỏ nhất của hàm số:

  • Nhận biết được định nghĩa và hình ảnh hình học của đường tiệm cận đứng, đường tiệm cận ngang và đường tiệm cận xiên của đồ thị hàm số.

  • Xác định được các đường tiệm cận của đồ thị hàm số.

2. Năng lực

Năng lực chung:

  • Năng lực tự chủ, tự học: Chủ động học tập, tìm hiểu nội dung bài học, biết lắng nghe và trả lời nội dung trong bài học.

  • Năng lực giải quyết vấn đề và sáng tạo: Tham gia tích cực vào hoạt động luyện tập, làm bài tập củng cố.

  • Năng lực giao tiếp và hợp tác: Thực hiện tốt nhiệm vụ trong hoạt động nhóm.

Năng lực riêng:

  • Năng lực tư duy và lập luận toán học: Ôn luyện các xác định các đường tiệm cận đứng, tiệm cận ngang và tiệm cận xiên của đồ thị hàm số.

  • Năng lực giải quyết các vấn đề toán học: Vận dụng các kiến thức đã học để  giải quyết một số bài toán gắn với thực tế.

3. Phẩm chất:

  • Cóý thức làm việc nhóm, ý thức tìm tòi, khám phá và sáng tạo cho HS => độc lập, tự tin và tự chủ.
  • Tích cực xây dựng bài, chủ động chiếm lĩnh kiến thức theo sự hướng dẫn của GV.

II. THIẾT BỊ DẠY HỌC VÀ HỌC LIỆU

- Giáo viên: Giáo án, sách giáo khoa, phiếu học tập.

- Học sinh: Vở, giấy nháp, bút.

III. TIẾN TRÌNH DẠY HỌC

A. KHỞI ĐỘNG

a) Mục tiêu: Tạo tâm thế và định hướng chú ý cho học sinh, tạo vấn đề và chủ đề.

b) Nội dung hoạt động: HS chú ý lắng nghe và thực hiện yêu cầu.

c) Sản phẩm học tập: HS nhận biết được các thông tin trong bài toán và nhớ lại kiến thức.

d) Tổ chức hoạt động:

- GV đặt câu hỏi cho cả lớp:

Tìm các đường tiệm cận của đồ thị hàm số

Gợi ý đáp án:

Tập xác định: .

Ta có:

 

Vậy độ thì hàm số có một đường tiệm cận ngang là .

Vậy  không phải là tiệm cận đứng của đồ thị hàm số.

Vậy đồ thị hàm số có một đường tiệm cận đứng là .

Hàm số đã cho không có tiệm cận xiên.

- GV nhận xét,dẫn dắt HS vào nội dung ôn tập bài “Đường tiệm cận của đồ thị hàm số”.

B. HỆ THỐNG LẠI KIẾN THỨC

a. Mục tiêu: HS nhắc lại và hiểu được phần lý thuyết của bài. Từ đó có thể áp dụng giải toán một cách dễ dàng.

b. Nội dung hoạt động: GV hướng dẫn HS nhắc lại phần kiến thức lí thuyết “Đường tiệm cận của đồ thị hàm số”.

c. Sản phẩm học tập: Câu trả lời của HS về các bài tập liên quan đến đường tiệm cận của đồ thị hàm số và chuẩn kiến thức của GV.

d. Tổ chức thực hiện:

HOẠT ĐỘNG CỦA GV- HS

DỰ KIẾN SẢN PHẨM

Bước 1: GV chuyển giao nhiệm vụ học tập.

GV đặt câu hỏi và cùng HS nhắc lại kiến thức phần lí thuyết cần ghi nhớ trong bài “Đường tiệm cận của đồ thị hàm số” trước khi thực hiện các phiếu bài tập.

  • Nhắc lại khái niệm của đường tiệm cận ngang.

  • Học sinh thực hiện ví dụ về tìm đường tiệm cận ngang.

 

 

 

 

 

 

 

 

 

  • Nêu khái niệm của đường tiệm cận đứng.

 

 

 

 

 

 

  • Thực hiện ví dụ về tìm đường tiệm cận đứng.

 

 

 

 

 

 

 

 

 

 

 

 

  • Nhắc lại khái niệm về đường tiệm cận xiên.

 

 

 

  • Thực hiện ví dụ tìm đường tiệm cận xiên của đồ thị hàm số.

Bước 2: Học sinh thực hiện nhiệm vụ học tập.

- HS tiếp nhận nhiệm vụ, ghi nhớ lại kiến thức, trả lời câu hỏi.

Bước 3: Báo cáo kết quả hoạt động, thảo luận.

- Đại diện một số HS đứng tại chỗ trình bày kết quả.

Bước 4: Đánh giá kết quả thực hiện nhiệm vụ học tập.

- GV đưa ra nhận xét, đánh giá chuẩn kiến thức.

1. Đường tiệm cận ngang

Đường thẳng  gọi là đường tiệm cận ngang (gọi tắt là tiệm cận ngang) của đồ thị hàm số  nếu

hoặc .

Ví dụ: Tìm đường tiệm cận ngang của đồ thị hàm số

Ta có:

   là một tiệm cận ngang của đồ thị hàm số.

 

là một tiệm cận ngang của đồ thị hàm số.

Vậy đồ thị hàm số có tiệm cận ngang là đường thẳng có phương trình và .

2. Đường tiệm cận đứng

Đường thẳng  gọi là đường tiệm cận đứng (gọi tắt là tiệm cận đứng) của đồ thị hàm số  nếu ít nhất một trong các điều kiện sau được thỏa mãn:

.

Ví dụ: Đồ thị hàm số  có bao nhiêu đường tiệm cận đứng?

- Tập xác định:

- Ta có:

 

Vậy đường thẳng  và  là hai tiệm cận đứng của đồ thị hàm số.

3. Đường tiệm cận xiên

Đường thẳng  gọi là đường tiệm cận xiên (gọi tắt là tiệm cận xiên) của đồ thị hàm số  nếu hoặc .

Ví dụ: Chứng minh đường thẳng  là một đường tiệm cận xiên của đồ thị hàm số  .

Ta có: 

Vậy đường thẳng  là một đường tiệm cận xiên của đồ thị hàm số đã cho.

 

C. BÀI TẬP LUYỆN TẬP, VẬN DỤNG.

a. Mục tiêu: HS biết cách giải các bài tập thường gặp trong bài “Đường tiệm cận của đồ thị hàm số” thông qua các phiếu bài tập.

b. Nội dung hoạt động: HS thảo luận nhóm, thực hiện các hoạt động cá nhân và hoạt động nhóm để hoàn thành phiếu bài tập.

c. Sản phẩm học tập: HS nhận biết và làm được các dạng bài liên quan đến tìm các đường tiệm cận của đồ thị hàm số hàm số.

d. Tổ chức thực hiện:

Nhiệm vụ 1: GV phát phiếu bài tập, cho HS nêu cách làm, GV đưa ra phương pháp giải và cho HS hoàn thành bài tập cá nhân và trình bày bảng.

PHIẾU BÀI TẬP SỐ 1

DẠNG 1: Xác định đường tiệm cận thông qua bảng biến thiên, đồ thị

Phương pháp giải:

  • Đường thẳng  được gọi là một đường tiệm cận đứng (hay tiệm cận đứng) của đồ thị hàm số  nếu ít nhất một trong các điều kiện sau thỏa mãn:

,

  • Đường thẳng  được gọi là một đường tiệm cận ngang (hay tiệm cận ngang) của đồ thị hàm số  nếu  hoặc .

Bài 1. Cho hàm số  có bảng biến thiên như sau:

Xác định đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số.

Bài 2: Cho hàm số  có bảng biến thiên như sau:

Xác định đường tiệm cận ngang và tiệm cận đứng của đồ thị hàm số.

Bài 3: Cho hàm số  có đồ thị hàm số như hình bên dưới. Hãy xác định các đường tiệm cận của đồ thị hàm số.

Bài 4: Cho hàm số  với  và có bảng biến thiên như sau:

Tính giá trị của

- HS phân tích đề và tìm câu trả lời.

- GV cho đại diện HS trình bày, chốt đáp án đúng và lưu ý lỗi sai.

Gợi ý đáp án:

DẠNG 1:

Bài 1:

Ta có:  và  nên đồ thị hàm số có 2 tiệm cận ngang là các đường thẳng có phương trình  và .

Và  nên hàm số có 1 tiệm cận đứng là đường thẳng có phương trình .

Bài 2:

Ta có: 

suy ra  là tiệm cận đứng của đồ thị hàm số đã cho.

suy ra  là tiệm cận đứng của đồ thị hàm số đã cho.

suy ra  là tiệm cận ngang của đồ thị hàm số đã cho.

Bài 3:

Từ đồ thị ta thấy:

Đường tiệm cận ngang của đồ thị hàm số là

Đường tiệm cận đứng của đồ thị hàm số là .

Bài 4:

Từ bảng biến thiên ta có:

nên đường tiệm cận ngang của đồ thị hàm số là  suy ra .

nên đường tiệm cận đứng của đồ thị hàm số là   suy ra .

Khi đó: .

 

Nhiệm vụ 2: GV phát đề luyện tập theo từng bàn, các bạn cùng bàn thảo luận, đưa ra đáp án đúng.

PHIẾU BÀI TẬP SỐ 2

DẠNG 2: Xác định đường tiệm cận của đồ thị hàm số cho trước. 

Phương pháp giải:

1. Đường tiệm cận ngang

Cho hàm số  có TXĐ:

Điều kiện cần:  phải chứa  hoặc .

Điều kiện đủ: 

Dạng 1: .

Nếu bậc  thì không có tiệm cận ngang.

Nếu bậc  thì tiệm cận ngang .

Nếu bậc  thì tiệm cận ngang  ( là tỉ số hệ số bậc cao nhất của tử và mẫu)

Dạng 2:  (hoặc )

Ta nhân liên hợp =>  (hoặc )

2. Đường tiệm cận đứng

Cho hàm số  có TXĐ:

Điều kiện cần: Giải  là tiệm cận đứng khi thỏa mãn điều kiện đủ:

ĐK1:  làm cho  và  xác định

ĐK2:  không phải nghiệm của  là tiệm cận đứng.

           là nghiệm  là tiệm cận đứng nếu

3. Đường tiệm cận xiên

Bước 1: Xét một trong hai điều kiện: hoặc , nếu thỏa mãn một trong hai điều kiện trên thì tồn tại đường tiệm cận xiên của đồ thị hàm số.

Bước 2: Tìm đường tiệm cận xiên:

Cách 1: Phân tích  thành dạng:  với  thì ) là đường tiệm cận xiên của đồ thị hàm số.

Cách 2:  Ta có thể tìm  bằng công thức:  và

Bước 3: Kết luận.

Chú y: Với hàm số

Nếu bậc của  bé hơn hay bằng bậc của  hoặc hơn hơn bậc của  từ hai bậc trở lên thì đồ thị hàm số không có tiệm cận xiên.

Nếu bậc của  lớn hơn bậc của  một bậc và  không chia hết cho  thì đồ thị hàm có tiệm cận xiên và ta tìm tiệm cận xiên bằng cách chia  cho  và viết , trong đó .

Bài 1: Tìm tiệm cận của các đồ thị hàm số sau:

a) b)
c) d)

Bài 2: Tìm tiệm cận của các hàm số sau:

a) b)
c) d)

Bài 3: Xác định các đường tiệm cận của đồ thị hàm số .

Bài 4: Xác định các đường tiệm cận của đồ thị các hàm số sau:

a) b)
c) d)

Bài 5: Đồ thị hàm số  có bao nhiêu đường tiệm cận? 

- HS hình thành nhóm, phân công nhiệm vụ, thoả luận, tìm ra câu trả lời.

- GV cho đại diện các nhóm trình bày, chốt đáp án đúng và lưu ý lỗi sai.

Gợi ý đáp án:

DẠNG 2:

Bài 1:

a)

Ta có:

Suy ra đường thẳng   là đường tiệm cận ngang của đồ thị hàm số.

Suy ra đường thẳng   là đường tiệm cận đứng của đồ thị hàm số.

b)

Ta có:

Suy ra đường thẳng   là đường tiệm cận ngang của đồ thị hàm số.

Suy ra đường thẳng   là đường tiệm cận đứng của đồ thị hàm số.

c)

Ta có:

Suy ra đường thẳng   là đường tiệm cận đứng của đồ thị hàm số.

Suy ra đường thẳng   là đường tiệm cận xiên của đồ thị hàm số.

d)

Ta có:

,

Suy ra đường thẳng   là đường tiệm cận đứng của đồ thị hàm số.

Suy ra đường thẳng   là đường tiệm cận xiên của đồ thị hàm số.

Bài 2:

a)

Hàm số đã cho xác định và liên tục trên .

Suy ra  là tiệm cận ngang của đồ thị hàm số.

Suy ra  là tiệm cận ngang của đồ thị hàm số.

Suy ra  là tiệm cận đứng của đồ thị hàm số.

.

Suy ra hàm số không có tiệm cận xiên.

b)

Hàm số đã cho xác định và liên tục trên .

Ta có: 

Vậy  là một đường tiệm cận xiên của đồ thị hàm số.

Vậy  là một đường tiệm cận xiên của đồ thị hàm số.

c)

Hàm số đã cho xác định và liên tục trên .

Vậy  là một đường tiệm cận xiên của đồ thị hàm số.

Vậy  là một đường tiệm cận ngang của đồ thị hàm số.

d)

Hàm số đã cho xác định và liên tục trên .

Ta có: 

Vậy  là một tiệm cận ngang của đồ thị hàm số.

Vậy  là một tiệm cận ngang của đồ thị hàm số.

, suy ra đồ thị hàm số không có tiệm cận xiên.

Bài 3:

 

Hàm số đã cho xác định và liên tục trên .

Ta có:

và   nên đường thẳng  là tiệm cận đứng của đồ thị hàm số.

nên đồ thị hàm số không có tiệm cận ngang.

 

, nên đường thẳng  là tiệm cận xiên của đồ thị hàm số.

Bài 4:

a)

Hàm số đã cho xác định và liên tục trên .

Ta có:

và  nên đường thẳng  là tiệm cận đứng của đồ thị hàm số.

và  nên đường thẳng  là tiệm cận đứng của đồ thị hàm số.

nên đường thẳng  là tiệm cận ngang của đồ thị hàm số.

Đồ thị hàm số không có tiệm cận xiên.

...........................

---------------------------------------

----------------------Còn tiếp---------------------

Trên chỉ là 1 phần của giáo án. Giáo án khi tải về có đầy đủ nội dung của bài. Đủ nội dung của học kì I + học kì II

MỘT VÀI THÔNG TIN:

  • Giáo án có nhiều ngữ liệu ngoài SGK
  • Kiến thức chính được khái quát dễ hiểu, dễ nhớ
  • Word và powepoint đồng bộ với nhau

Thời gian bàn giao giáo án

  • Khi đặt, nhận ngay giáo án kì I
  • 30/12 bàn giao 1/2 học kì II
  • 30/01 bàn giao đủ cả năm

Phí giáo án dạy thêm

  • Giáo án word: 450k
  • Giáo án Powerpoint: 550k
  • Trọn bộ word + PPT: 850k

=> Chỉ cần gửi trước 350k. Sau đó gửi dần trong quá trình nhận giáo án. Khi nhận đủ kì sẽ gửi nốt số còn lại

Khi đặt nhận ngay và luôn:

  • Giáo án kì I
  • Phiếu trắc nghiệm cấu trúc mới: 15 - 20 phiếu
  • 5 kiểm tra giữa học kì I - đề cấu trúc mới, ma trận, đáp án..
  • PPCT, file word lời giải SGK

Cách đặt:

  • Bước 1: Gửi phí vào tk: 10711017 - Chu Văn Trí - Ngân hàng ACB (QR)
  • Bước 2: Nhắn tin tới Zalo Fidutech - nhấn vào đây để thông báo và nhận giáo án

Xem toàn bộ: Giáo án dạy thêm toán 12 kết nối tri thức đủ cả năm

ĐẦY ĐỦ GIÁO ÁN CÁC BỘ SÁCH KHÁC

GIÁO ÁN WORD LỚP 12 KẾT NỐI TRI THỨC

Giáo án toán 12 kết nối tri thức
Giáo án đại số 12 kết nối tri thức
Giáo án hình học 12 kết nối tri thức

Giáo án vật lí 12 kết nối tri thức
Giáo án hoá học 12 kết nối tri thức
Giáo án sinh học 12 kết nối tri thức

Giáo án ngữ văn 12 kết nối tri thức
Giáo án lịch sử 12 kết nối tri thức
Giáo án địa lí 12 kết nối tri thức
Giáo án kinh tế pháp luật 12 kết nối tri thức

Giáo án Công nghệ Điện - điện tử 12 kết nối tri thức
Giáo án Công nghệ 12 Lâm nghiệp - Thuỷ sản kết nối tri thức
Giáo án Tin học 12 - Định hướng Khoa học máy tính kết nối tri thức
Giáo án Tin học 12 - Định hướng Tin học ứng dụng kết nối tri thức

Giáo án thể dục 12 bóng rổ kết nối tri thức
Giáo án thể dục 12 cầu lông kết nối tri thức
Giáo án thể dục 12 bóng chuyền kết nối tri thức

Giáo án mĩ thuật 12 kết nối tri thức
Giáo án âm nhạc 12 kết nối tri thức
Giáo án hoạt động trải nghiệm hướng nghiệp 12 kết nối tri thức

GIÁO ÁN POWERPOINT LỚP 12 KẾT NỐI TRI THỨC

Giáo án Powerpoint Toán 12 kết nối tri thức
Giáo án Powerpoint hình học 12 kết nối tri thức
Giáo án Powerpoint đại số 12 kết nối tri thức

Giáo án powerpoint vật lí 12 kết nối tri thức
Giáo án powerpoint ngữ văn 12 kết nối tri thức
Giáo án powerpoint địa lí 12 kết nối tri thức

Giáo án powerpoint lịch sử 12 kết nối tri thức
Giáo án powerpoint địa lí 12 kết nối tri thức
Giáo án Powerpoint Kinh tế pháp luật 12 kết nối tri thức

Giáo án Powerpoint Mĩ thuật 12 kết nối tri thức
Giáo án Powerpoint Tin học 12 - Định hướng Tin học ứng dụng kết nối tri thức
Giáo án Powerpoint Tin học 12 - Định hướng Khoa học máy tính kết nối tri thức

Giáo án powerpoint Công nghệ 12 Điện - điện tử kết nối tri thức
Giáo án powerpoint Công nghệ 12 Lâm nghiệp - Thuỷ sản kết nối tri thức
Giáo án powerpoint hoạt động trải nghiệm hướng nghiệp 12 kết nối tri thức

GIÁO ÁN CHUYÊN ĐỀ LỚP 12 KẾT NỐI TRI THỨC

Giáo án chuyên đề toán 12 kết nối tri thức
Giáo án chuyên đề vật lí 12 kết nối tri thức
Giáo án chuyên đề hoá học 12 kết nối tri thức
Giáo án chuyên đề sinh học 12 kết nối tri thức

Giáo án chuyên đề ngữ văn 12 kết nối tri thức
Giáo án chuyên đề lịch sử 12 kết nối tri thức
Giáo án chuyên đề địa lí 12 kết nối tri thứ
Giáo án chuyên đề kinh tế pháp luật 12 kết nối tri thức

Giáo án chuyên đề Công nghệ 12 Công nghệ điện - điện tử kết nối tri thức
Giáo án chuyên đề Công nghệ 12 Lâm nghiệp - Thuỷ sản kết nối tri thức
Giáo án chuyên đề Tin học 12 - Định hướng Khoa học máy tính kết nối tri thức
Giáo án chuyên đề Tin học 12 - Định hướng Tin học ứng dụng kết nối tri thức

GIÁO ÁN POWERPOINT CHUYÊN ĐỀ LỚP 12 KẾT NỐI TRI THỨC

 

GIÁO ÁN DẠY THÊM LỚP 12 KẾT NỐI TRI THỨC

Giáo án dạy thêm ngữ văn 12 kết nối tri thức
Giáo án powerpoint dạy thêm ngữ văn 12 kết nối tri thức
Giáo án dạy thêm toán 12 kết nối tri thức
Giáo án powerpoint dạy thêm toán 12 kết nối tri thức

Tài liệu giảng dạy

Xem thêm các bài khác

Chat hỗ trợ
Chat ngay