Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số

Tải giáo án PowerPoint dạy thêm Toán 11 kết nối tri thức Bài 15: Giới hạn của dãy số. Giáo án điện tử thiết kế hiện đại, đẹp mắt, nhiều bài tập ôn tập, mở rộng kiến thức phong phú. Tài liệu tải về và chỉnh sửa được. Mời thầy cô và các bạn kéo xuống theo dõi.

Xem: => Giáo án toán 11 kết nối tri thức

Click vào ảnh dưới đây để xem 1 phần giáo án rõ nét

Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số
Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số
Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số
Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số
Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số
Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số
Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số
Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số
Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số
Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số
Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số
Giáo án powerpoint dạy thêm Toán 11 kết nối Bài 15: Giới hạn của dãy số

Các tài liệu bổ trợ khác

Xem toàn bộ: Giáo án powerpoint dạy thêm toán 11 kết nối tri thức đủ cả năm

THÂN MẾN CHÀO ĐÓN CẢ LỚP ĐẾN VỚI TIẾT HỌC HÔM NAY! 

KHỞI ĐỘNG 

  • Cho  lim┬(n→+∞)⁡〖u_n 〗 =alim┬(n→+∞)⁡〖v_n 〗 =b≠0, hãy tính

lim┬(n→+∞)⁡〖〖(u〗_n 〗.v_n);lim┬(n→+∞)⁡〖(u_n 〗+v_n);   lim┬(n→+∞)⁡〖u_n/v_n 〗   

  • Nêu công thức tính tổng cấp số nhân lùi vô hạn có số hạng đầu là u_1 và công bội là q.

CHƯƠNG V: GIỚI HẠN.  

HÀM SỐ LIÊN TỤC 

BÀI 15: GIỚI HẠN CỦA DÃY SỐ 

HỆ THỐNG  
KIẾN THỨC 

  1. Giới hạn hữu hạn của dãy số

Ta nói dãy số (u_n) giới hạn là 0 khi n dần tới dương vô cực, nếu |u_n | có thể nhỏ hơn một số dương bé tùy ý, kể từ một số hạng nào đó trở đi, kí hiệu lim_(x→+∞)〗⁡〖u_n= 0 hay u_n→0 khi n→+∞. 

Ví dụ: Dãy số có giới hạn là 0 là dãy  

u_n=1/n;u_n=1/n^2 . 

Chú ý 

Từ định nghĩa dãy số có giới hạn 0, ta có kết quả như sau: 

  • lim┬(x→+∞)⁡〖1/n^k =0 với k là một số nguyên dương.
  • lim┬(x→+∞)⁡〖q^n =0 nếu |q|<1;
  • Nếu |u_n |≤v_n với mọi n≥1lim┬(x→+∞)⁡〖v_n =0 thì lim┬(x→+∞)⁡〖u_n =0.
  1. Giới hạn hữu hạn của dãy số

Ta nói dãy số (u_n)giới hạn là số thực a khi n dần tới dương vô cực nếu (lim)┬(n→+∞)⁡〖(u_n-a)=0, kí hiệu (lim)┬(n→+∞)⁡〖u_n =a hay u_n→a khi n→+∞. 

"Ví dụ:"  (lim)┬(n→+∞)  (2n+1)/3n=2/3 

Chú ý: Nếu u_n=c (hằng số) thì  lim┬(n→+∞) u_n=c. 

  1. Định lí về giới hạn hữu hạn của dãy số
  2. a) Nếu (lim)┬(n→+∞)⁡〖u_n =a(lim)┬(n→+∞)⁡〖v_n =b thì

(lim)┬(n→+∞)⁡〖(u_n+v_n)=a+b 

(lim)┬(n→+∞)⁡〖(u_n-v_n)=a-b 

(lim)┬(n→+∞)⁡〖(u_n.v_n)=a.b 

(lim)┬(n→+∞)⁡(u_n/v_n )=a/b " "("nếu" b≠0) 

  1. b)  Nếu u_n≥0 với mọi n(lim)┬(n→+∞)⁡〖u_n =a thì

a≥0(lim)┬(n→+∞)⁡√(u_n )=√a 

  1. Tổng của cấp số nhân lùi vô hạn

Cấp số nhân vô hạn (u_n) có công bội q với |q|<1 được gọi là cấp số nhân lùi vô hạn 

S=u_1+u_2+…+u_n+…=u_1/(1-q) □( )(|q|<1) 

"Ví dụ: Xét tổng" S=  1/2+(-1/4)+1/8+…+(-1)^(n+1)/(2^n  )+… 

"Tổng trên là tổng của một cấp số nhân lùi vô hạn với" u_1=1/2;q=-1/2 

"Vậy" S=u_1/(1-q)=1/3. 

  1. Giới hạn vô cực của dãy số
  • Dãy số (u_n) được gọi là có giới hạn +∞ khi n→+∞ nếu u_n có thể lớn hơn một số dương bất kì, kể từ một số hạng nào đó trở đi, kí hiệu (lim)┬(n→+∞)⁡〖u_n =+∞ hay u_n→ +∞ khi n→+∞.
  • Dãy số (u_n) được gọi là có giới hạn -∞ khi n→+∞ nếu (lim)┬(n→+∞)⁡〖(-u_n)=+∞, kí hiệu (lim)┬(n→+∞)⁡〖u_n =-∞ hay u_n→-∞ khi n→+∞.

ØTheo định nghĩa trên ta có: 

(lim)┬(n→+∞)⁡〖n^k =+∞, với k là số nguyên dương. 

(lim)┬(n→+∞)⁡〖q^n 〗, với q>1. 

Quy tắc 

  • Nếu (lim)┬(n→+∞)⁡〖u_n =a(lim)┬(n→+∞)⁡〖v_n =+∞

"     (hoặc"   (lim)┬(n→+∞)⁡〖v_n 〗=-∞") thì"   (lim)┬(n→+∞)⁡〖u_n/v_n 〗=0 

  • Nếu (lim)┬(n→+∞)⁡〖u_n 〗=a>0, (lim)┬(n→+∞)⁡〖v_n 〗=0 và v_n>0 với mọi n thì

(lim)┬(n→+∞)⁡〖u_n/v_n 〗=+∞ 

  • Nếu (lim)┬(n→+∞)⁡〖u_n 〗=+∞(lim)┬(n→+∞)⁡〖v_n 〗=a>0 thì (lim)┬(n→+∞)⁡〖u_n v_n 〗=+∞.

LUYỆN TẬP 

PHIẾU BÀI TẬP SỐ 1 

DẠNG 1: Dùng định nghĩa chứng minh giới hạn của dãy số 

Phương pháp giải:  

  • Chứng minh dãy số giới hạn bằng 0 bằng định nghĩa:

Ta nói dãy số (u_n ) có giới hạn là 0 khi n dần tới dương vô cực, nếu |u_n | có thể nhỏ hơn một số dương bé tuỳ ý, kể từ một số hạng nào đó trở đi, kí hiệu lim u_n=0 hay u_n→0 khi n→+∞. 

  • Chú ý: lim┬(x→+∞)⁡〖1/n^k =0 với k là một số nguyên dương

lim┬(x→+∞)⁡〖q^n =0 nếu |q|<1 

Nếu |u_n |≤v_n với mọi n≥1lim┬(x→+∞)⁡〖v_n =0 thì lim┬(x→+∞)⁡〖u_n =0 

  • Chứng minh dãy có giới hạn hữu hạn bằng định nghĩa: ta chứng minh

lim⁡|u_n-L|=0 

  • Mở rộng: Định lí kẹp

Định lí: Cho ba dãy số (u_n ),(v_n )(w_n ). Nếu u_n≤v_n≤w_n,(∀n) và  lim⁡〖u_n 〗=lim⁡〖w_n 〗=a,(a∈R) thì lim⁡〖v_n 〗=a. 

Bài 1. Chứng minh các dãy số (u_n ) sau đây có giới hạn là 0.    

"a) " u_n=(-1)^n/(4n+5) "           b) " u_n=(cos⁡4 n)/(n+3) "           c) " u_n=(1+cos⁡〖n^3 〗)/(2n+3) "         d)" u_n=(-1)^n/2^(n+1) -1/3^(n+1) 

Giải: 

  1. a) Với mỗi số dương ε tùy ý, cho trước, ta có

|u_n |=|(-1)^n/(4n+5)|=1/(4n+5)<ε⇔4n+5>1/ε⇔n>1/4 (1/ε-5) 

"Với mỗi số dương cho trước, thì với mọi số tự nhiên" n>1/4 (1/ε-5)  "ta đều có" |u_n |<ε 

Vậy lim⁡〖u_n 〗=0. 

  1. b) Ta có ∀n∈N^∗ thì |cos⁡4 n|≤1

⇒|u_n |=|(cos⁡4 n)/(n+3)|≤|1/(n+3)|≤|1/n|=1/n 

"Áp dụng: “Nếu " k" là một số thực dương cho trước thì "  lim⁡〖1/n^k 〗=0"” ta được"  lim⁡〖1/n〗=0 

Từ đó suy ra lim⁡〖u_n 〗=0. 

  1. c) Ta có ∀n∈N^∗ thì |cos⁡〖n^3 〗 |≤1

⇒|u_n |=|(1+cos⁡〖n^3 〗)/(2n+3)|≤|2/(2n+3)|≤|2/2n|=1/n 

"Áp dụng “Nếu " k" là một số thực dương cho trước thì "  lim⁡〖1/n^k 〗=0"” ta được"  lim⁡〖1/n〗=0 

Từ đó suy ra lim⁡〖u_n 〗=0. 

  1. d) Ta có

|u_n |=|(-1)^n/2^(n+1) -1/3^(n+1) |≤1/2^(n+1) +1/3^(n+1) <1/2^(n+1) +1/2^(n+1) =1/2^n ,∀n∈N 

"Vì"  lim⁡〖1/2^n 〗=〖lim⁡(1/2)〗^n=0 

Từ đó suy ra lim⁡〖u_n 〗=0. 

"Bài 2. Chứng minh:  a)" u_n=(2n+3)/(4n+5)=1/2 

... 

Trên chỉ là 1 phần của giáo án. Giáo án khi tải về có đầy đủ nội dung của bài. Đủ nội dung của học kì I + học kì II

Hệ thống có đầy đủ các tài liệu:

  • Giáo án word (350k)
  • Giáo án Powerpoint (400k)
  • Trắc nghiệm theo cấu trúc mới (200k)
  • Đề thi cấu trúc mới: ma trận, đáp án, thang điểm..(200k)
  • Phiếu trắc nghiệm câu trả lời ngắn (200k)
  • Trắc nghiệm đúng sai (250k)
  • Lý thuyết bài học và kiến thức trọng tâm (200k)
  • File word giải bài tập sgk (150k)
  • Phiếu bài tập để học sinh luyện kiến thức (200k)

Nâng cấp lên VIP đê tải tất cả ở tài liệu trên

  • Phí nâng cấp VIP: 800k

=> Chỉ gửi 450k. Tải về dùng thực tế. Nếu hài lòng, 1 ngày sau mới gửi phí còn lại

Cách nâng cấp:

  • Bước 1: Chuyển phí vào STK: 1214136868686 - cty Fidutech - MB(QR)
  • Bước 2: Nhắn tin tới Zalo Fidutech - nhấn vào đây để thông báo và nhận tài liệu

Xem toàn bộ: Giáo án powerpoint dạy thêm toán 11 kết nối tri thức đủ cả năm

ĐẦY ĐỦ GIÁO ÁN CÁC BỘ SÁCH KHÁC

GIÁO ÁN WORD LỚP 11 KẾT NỐI TRI THỨC

 

GIÁO ÁN POWERPOINT LỚP 11 KẾT NỐI TRI THỨC

GIÁO ÁN CHUYÊN ĐỀ LỚP 11 KẾT NỐI TRI THỨC

GIÁO ÁN DẠY THÊM 11 KẾT NỐI TRI THỨC

CÁCH ĐẶT MUA:

Liên hệ Zalo: Fidutech - nhấn vào đây

Tài liệu giảng dạy

Xem thêm các bài khác

Chat hỗ trợ
Chat ngay